来源:科学网 发布时间:2024/6/25 17:52:21
选择字号:
北京大学、新加坡国立大学等三位专家讲述柔性生物电子

 

 
 
 
直播时间:2024年6月25日(周二)20:00-22:00
 
直播平台:
 
 
科学网APP
 
https://weibo.com/l/wblive/p/show/1022:2321325049159462813726
 
(科学网微博直播间链接)
 
 
科学网微博
 
 
科学网视频号
 
【直播简介】
 
北京时间6月25日晚八点,iCANX Youth Talks第六十一期邀请到了北京大学Mengdi Han, 新加坡国立大学Yamin Zhang, 西安交通大学Jian Lv三位教授主讲,东南大学 Binghao Wang教授担任研讨嘉宾,香港城市大学Yu Song 教授担任主持人,期待你一起加入这场知识盛宴。
 
【嘉宾介绍】
 
 
Mengdi Han
 
北京大学
 
Magnetic Implants for Wireless Biosensing
 
 
Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. This presentation will introduce a set of millimeter-scale, chip-less, and battery-less magnetic implants that can pair with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.
 
植入式传感器可以置于各类器官的特定部位,以精确评估健康状况。然而,为了读取植入式传感器所检测的信号,往往需要经皮导线、集成电路芯片或相对庞大的读取设备,这些方式可能增加感染风险、降低植入式器件的生物相容性、限制了检测系统的便携性。本报告将介绍一种毫米尺度、无芯片、无电池的磁性植入式器件,可以与可穿戴设备进行配对,用于测量多种物理和生化信号。可穿戴设备可以无线诱导磁性植入式器件产生大幅度的阻尼振动,并捕获其随后的运动状态。磁性植入物的运动状态可以反映了其周围的物理条件和特定生化物质的浓度。该系统已基于大鼠模型开展了在体实验,实现了脑脊液黏度、颅内压和脑脊液葡萄糖水平等参数的无线测量。该系统的植入部分尺寸为毫米量级,穿戴部分尺寸为厘米量级,具有小型化、便携化的特点,为连续、无线监测生物体内各种物理和生化指标提供了可能。
 
[BIOGRAPHY]
 
Dr. Mengdi Han is an Assistant Professor in the Department of Biomedical Engineering, College of Future Technology, Peking University. He received his B.S. degree in Huazhong University of Science and Technology in 2012 and Ph.D. degree in Peking University in 2017. He was a visiting Ph.D. student at Department of Materials Science and Engineering, University of Illinois Urbana-Champaign from 2015 to 2017. He worked as a postdoctoral fellow at Querrey Simpson Institute for Bioelectronics, Northwestern University from 2017 to 2020. He published more than 100 SCI-indexed papers, including Nature Electronics, Nature Biomedical Engineering, Science Translational Medicine, Science Robotics, Science Advances, PNAS, Advanced Materials, ACS Nano etc. His research group aims to create advanced structures, such as 3D mesostructures and magnetic structures, for bioelectronics. His research has been recognized with many awards including MIT Technology Review Innovators Under 35 Asia Pacific, and Microsystems & Nanoengineering Young Scientist Award.
 
韩梦迪,北京大学未来技术学院生物医学工程系助理教授,研究员,博士生导师。2012年本科毕业于华中科技大学电子科学与技术系,2017年博士毕业于北京大学微纳电子学系;2015-2017年作为联合培养博士生就读于美国伊利诺伊大学材料科学与工程系,2017-2020年于美国西北大学Querrey Simpson生物电子研究所从事博士后研究。已发表SCI论文百余篇,总被引次数7000余次;其中第一/通讯作者论文发表于Nature Electronics、Nature Biomedical Engineering、Science Translational Medicine、Science Robotics、Science Advances、PNAS、Advanced Materials、ACS Nano等期刊;获《麻省理工科技评论》亚太地区35岁以下科技创新35人、Microsystems & Nanoengineering 青年科学家等奖励及荣誉。韩梦迪课题组致力于研发三维或磁性的生物电子器件与生物医学微系统,以可穿戴设备、微创诊疗器械等形式服务于生命健康领域。
 
 
Yamin Zhang
 
新加坡国立大学
 
Self-powered, bioresorbable optoelectronic devices
 
 
Programmable engineering platforms for active control of medical devices include power sources, delivery mechanisms, communication hardware, and associated electronics, most typically in forms that require surgical extraction after a period of use. In this talk, I will introduce our self-powered optoelectronic platforms that bypasses key disadvantages of these systems and enables miniaturized devices for drug delivery and electrotherapy, with constituent materials being bioresorbable that naturally degrade after a period of stable operation in the human body. Bioresorbable batteries serve as power supplies. Studies of various bioresorbable electrode materials define the key considerations and guide optimized choices in designs. Programmability relies on the use of external light sources to illuminate wavelength-sensitive phototransistors via wavelength-division multiplexing strategy. In vivo demonstrations of programmed release of lidocaine and multi-site cardiac pacing in small and large animal models illustrate the functionality in the context of drug delivery and electrotherapy. This platform can be readily adapted for a broad range of additional applications. 
 
可编程控制的医疗器件中通常包含电源、通信硬件和相关的电子设备。这些系统在植入身体一段时间后需要手术取出。在此次报告中,我将介绍我们设计的自供电的光电平台,该平台克服了这些系统的主要缺点。基于此平台,我们设计了可应用于给药和电治疗的微型化器件。器件所用的生物可吸收材料能够在植入身体一段时间后自然降解。我们设计了生物可吸收电池为器件提供能源,研究了多种生物可吸收的电极材料。通过波长分割复用策略,我们实现了器件的可编程性,并成功在小型和大型的动物实验中实现了利多卡因的可控释放和心脏的多位点起搏,验证了此自供电光电平台在给药和电疗方面的应用。该平台还可以被广泛应用于其他领域。
 
[BIOGRAPHY]
 
Yamin Zhang is an Assistant Professor under Presidential Young Professorship at the Department of Chemical & Biomolecular Engineering in the National University of Singapore (NUS). She was a Research Associate (Jul 2023–Jan 2024) and a Postdoctoral Fellow (Feb 2021–Jun 2023) in Prof. John A. Rogers’s group at the Querrey Simpson Institute for Bioelectronics, Northwestern University. She received her Ph.D. degree in Chemical Engineering from Georgia Institute of Technology in 2020, under the supervision of Prof. Nian Liu. In 2016, she received a B.S. in Chemical Engineering and Technology from Tianjin University and a B.S. in Finance from Nankai University. Her research focuses on advancing the frontiers of battery technology and electrochemical strategies for next-generation medical devices and sustainable energy solutions, with an overarching focus on healthcare innovation and environmental sustainability. She has published over 30 papers (h-index: 21) in numerous high-impact journals, including Science, Nature Biomedical Engineering, PNAS, Chemical Reviews, Energy & Environmental Science, Nano Letters, ACS Energy Letters, etc. She is a recipient of several grants/awards, including AHA Early Faculty Independence Award (2023), MIT ChemE Rising Stars (2022), NSF I-Corps (2022), Chinese Government Award for Outstanding Students Abroad (2021), Best PhD Thesis Award at Georgia tech (2020), and ECS Georgia Section Outstanding Student Achievement Award (2020).
 
张亚敏博士,新加坡国立大学化学与生物分子工程系助理教授、校长青年教授。于2016年获得天津大学化学工程学士学位及南开大学金融学学士学位,2016-2020年底于美国佐治亚理工学院化学生物工程系刘念教授课题组从事博士研究(电化学);2021年2月至2024年1月于美国西北大学John A. Rogers(美国四院院士、柔性电子学先驱)教授课题组从事博士后研究(生物电子)。她的课题组致力于推动电池/电化学技术在生物医疗和可持续发展上的应用。已发表30余篇论文(H指数21),其中包括Science, Nature Biomedical Engineering, PNAS, Chemical Reviews, Energy & Environmental Science, Nano Letters, ACS Energy Letters等刊物。获MIT ChemE Rising Stars, American Heart Association Early Faculty Independence Award, NSF I-Corps, 中国政府海外优秀学生奖,Sigma Xi Best Doctoral Dissertation等奖励。
 
 
Jian Lv
 
西安交通大学
 
Sintering solution curing for the printing of stretchable electronics
 
 
Printing is a high efficiency, low cost and large-area process, playing a key role in realizing the mass manufacturing of flexible stretchable electronics. However, compared with the matured printed bendable flexible electronics, the performance of printed stretchable electronics is still underscored. It is challenging to acquire both high stretchability and conductivity, as the electrical properties are dependent on percolated networks while the mechanical robustness relies on the insulative binder. Meanwhile, cyclic deformation severely deteriorates the overall electromechanical performance, impeding the widespread application printed stretchable electronics. Unlike traditional light-curing and heat-curing processes, we have developed sintering solution curing technology for the printing of high-performance stretchable electronics. The ion-induced sintering of silver conductive fillers enhances the electron transport and non-solvent phase separation produces a porous binder structure, which improves the conductivity of and inhibits the crack propagation during the tensile process, respectively. Two factors worked synergistically to improves the conductivity, tensile limit and durability to cyclic tensile, simultaneously. The sintering solution curing strategy was applied to develop a new stretchable sweat battery and a soft sensing gripper for wearable device power supply and smart agricultural picking, respectively.
 
印刷电子工艺具有高效率、低成本和可大面积制造的特点,是实现柔性可拉伸电子批量化制造的重要途径。然而,和已成熟的印刷可弯折柔性电子相比,兼顾拉伸性降低了功能电极的性能和连接导线的导电性,循环拉伸变形进一步降低了印刷可拉伸器件的可靠性,极大地限制了其在实际应用中的推广。不同于传统的光固化和加热固化工艺,我们开发了烧结溶液固化技术用于高性能可拉伸柔性电子的制造。利用溶液中的离子诱导烧结银填料和非溶剂相分离诱导造孔的原理,烧结增强银片之间的电子传输并产生多孔的粘结剂结构,提升了连接导线的导电性并对拉伸过程中裂纹的拓展起到抑制作用,电导率、拉伸极限和循环拉伸性能同步得到改善。进一步利用溶液烧结固化印刷技术,开发了新型柔性汗液电池和软机器传感抓手,用于可穿戴设备供电和智慧农业采摘。
 
[BIOGRAPHY]
 
Jian Lv(Lyu), an associate professor at Xian Jiaotong University since 2023, mainly focuses on the printed stretchable flexible electronics and their application in wearable medical electronics and soft robotics. He graduated from the same university in 2019, and worked as a visiting graduate student at University of California, San Diego from 2017 to 2019 and a postdoc research fellow at Nanyang Technological University from 2019 to 2023. He has published more than 50 papers in Sci. Adv., Nat. Commun., Energy Environ. Sci. and Adv. Funct. Mater. and other academic journals, which has been cited more than 2,300 times (based on Google Scholar). He has applied 4 international PCT patents and Chinese invention patents, and his scientific research results have been reported by media around the world, including CAN, Forbes, Daily Mail, Daily Science and Yahoo. After returning to China, he was selected into the Sanqin Talent Youth Introduction Program of Shaanxi Province and the Youth Top-notch Talent Program of Xian Jiaotong University, participating in the National Key R&D Program for the design of stretchable circuit for the medical applications.
 
吕建,西安交通大学副教授,主要从事印刷可拉伸柔性传感器及其在可穿戴医疗电子和软体机器人中的应用研究。2019年毕业于西安交通大学,2017-2019年在加州大学圣地亚哥分校担任访问学生和科研助理,2029-2023在新加坡南洋理工大学从事博士后研究。共发表SCI论文44篇,其中一作/通讯(共同)15篇,包括Sci. Adv.,Nat. Commun.,Energy Environ. Sci.和Adv. Funct. Mater.等学术期刊,他引2300余次(基于Google Scholar),申请国际PCT专利2项,授权中国发明专利2项,科研成果先后被成果被新加坡电视台和报纸以及世界多家媒体包括美国福布斯、英国每日邮报、每日科学报和雅虎报道。回国后,入选陕西省三秦英才青年引进计划和西安交通大学青年拔尖人才计划,参与国家重点研发计划,研发用于医疗器件的可拉伸印刷电路。
 
【主持人】
 
 
 
Yu Song
 
香港城市大学
 
【研讨嘉宾】
 
 
 
Binghao Wang
 
东南大学
 

 

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
“研0”科研入门需要作哪些准备? 中国科学家首次发现“无摩擦的冰”
冰表面长啥样?原子级分辨图像揭晓答案 北方中纬高频雷达网发布首批科学探测结果
>>更多
 
一周新闻排行
 
编辑部推荐博文