来源:科学网 发布时间:2025/9/26 14:37:44
选择字号:
美国南加州大学教授讲述面向移动机器人的基于忆阻器的混合模拟-数字小脑系统

 

直播时间:2025年9月26日(周五)20:00-21:30

直播平台:

科学网APP

https://weibo.com/l/wblive/p/show/1022:2321325215124025114638

(科学网微博直播间链接)

科学网微博

科学网视频号

北京时间2025年9月26日晚八点,iCANX Talks 第246期邀请到了美国南加州大学教授Wei Wu担任主讲嘉宾,华中科技大学副教授Boxiang Song,香港大学助理教授Can Li,罗伯特?博世公司高级驾驶辅助系统软件与服务首席技术官Yuhan Yao担任研讨嘉宾,北京大学教授HaiXia Zhang担任主持人。这将是一场汇聚顶尖学者的盛会,共同探讨前沿科技与学术挑战!更多精彩,敬请期待!

【嘉宾介绍】

Wei Wu

南加州大学

Memristor-based Hybrid Analog-Digital Cerebellum (small brain) for Mobile Robotics

【Abstract】

Algorithms for mobile robotic systems are generally implemented on purely digital computing platforms. As complementary metal-oxide-semiconductor (CMOS) scaling approaches the end of the road, the improvement of the throughput of digital processors and computing power efficiency is nearing its end. This issue not only affects the power requirements of large data centers but also limits the performance of mobile robotic systems with perception and actuation. Developing alternative computational platforms may lead to more energy-efficient and responsive mobile robotics. Inspired by how human and animal brains work, we report a hybrid analog-digital computing platform enabled by memristors on mobile robots. The “cerebellums” (sensor fusion + motion control) of mobile robotic systems are implemented in memristor-based analog circuits, and the rest of the system is implemented in digital circuits. Such a platform can perform computation in the analog domain and thus removes the speed and energy efficiency bottleneck. The robot using the hybrid analog-digital platform demonstrated dramatic enhancement of speed and energy efficiency over the traditional digital platform.

移动机器人系统的算法通常在纯数字计算平台上实现。随着互补金属氧化物半导体(CMOS)缩放技术逐渐走向极限,数字处理器吞吐量和计算能效的提升也已接近终点。这一问题不仅影响大型数据中心的功耗需求,还限制了具备感知与驱动功能的移动机器人系统的性能。开发替代计算平台有望打造出更节能、响应更迅速的移动机器人技术。受人类及动物大脑工作方式的启发,我们提出了一种在移动机器人上实现的、基于忆阻器的混合模数计算平台。该平台中,移动机器人系统的 “小脑”(传感器融合 + 运动控制)通过基于忆阻器的模拟电路实现,系统其余部分则通过数字电路实现。此类平台可在模拟域进行计算,从而突破速度与能效方面的瓶颈。实验表明,采用该混合模数平台的机器人,其速度和能效较传统数字平台实现了显著提升。

【BIOGRAPHY】

Professor Wei Wu graduated from Peking University with a BS in Physics in 1996 and received a Ph.D. in Electrical Engineering from Princeton University in 2003. He is a Professor at the Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, and a Fellow of the National Academy of Inventors (NAI) of the U.S. Before joining USC in 2012, he had worked as a research associate, scientist, and senior scientist at HP Labs. His work includes nanoimprint lithography and applications in nano-electronics, nano-photonics, plasmonics, chemical sensing, and nano-electrochemical cells. He co-authored 132 peer-reviewed scientific journal papers with 13958 citations, 2 book chapters, and more than 150 conference presentations, including 16 keynote and invited presentations. He has 122 granted US patents. Half of them were also filed internationally. His H-index is 57. He is a co-editor of Applied Physics A and an associate editor of IEEE Transactions on Nanotechnology. He was also an IEEE Nanotechnology Council 2015 and 2016 distinguished lecturer and a recipient of the USC Stevens Center for Innovation Commercialization Award 2020.

Wei Wu教授于 1996 年毕业于北京大学,获物理学学士学位;2003 年毕业于普林斯顿大学,获电子工程博士学位。他现任美国南加利福尼亚大学明谢电子与计算机工程系教授,同时是美国国家发明家学会(NAI)会士。2012 年加入南加利福尼亚大学前,他曾在惠普实验室(HP Labs)先后担任研究助理、科学家及高级科学家。Wei Wu教授的研究方向涵盖纳米压印光刻技术及其在纳米电子学、纳米光子学、等离激元学、化学传感及纳米电化学电池领域的应用。他联合撰写了 132 篇经同行评审的科学期刊论文,总被引次数达 13958 次;参与编写 2 部著作的章节;发表会议报告超 150 次,其中包括 16 次主题报告及特邀报告。他拥有 122 项已授权的美国专利,其中半数同时在国际上申请了专利。其 H 指数为 57。此外,Wei Wu教授还担任《应用物理 A 辑》(Applied Physics A)联合编辑、《IEEE 纳米技术汇刊》(IEEE Transactions on Nanotechnology)副编辑;曾于 2015 年和 2016 年担任 IEEE 纳米技术协会杰出讲师,并于 2020 年荣获南加利福尼亚大学史蒂文斯创新商业化中心奖(USC Stevens Center for Innovation Commercialization Award)。

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
“彩虹”工具库让细胞内部可视化 科学家在人类骨骼内部发现微塑料
首个由AI设计的病毒问世 首次揭示深海热液动物“以毒攻毒”的机制
>>更多
 
一周新闻排行
 
编辑部推荐博文