近日,电子科技大学基础与前沿研究院教授邓旭、王德辉在《先进材料》发表题研究论文。研究者发展了仿生自适应超疏水表面的设计策略,为进一步提升两栖飞机以及其他跨介质航行器的作业性能提供了新的设计思路。
跨介质航行器具备在水下(面)和空中作业的能力,然而这类航行器在作业时不得不面临水的阻力和粘附问题。以水陆两栖飞机为例,当它在水面滑行时,流体阻力会严重限制其滑行速度;当飞机脱离水面时,水粘附在底部又形成极大的拖拽力,导致飞机的最大起飞重量难以进一步提升。
因此,减小飞机在滑行过程中的流体阻力和脱离过程中的水粘附是进一步增加两栖飞机起飞效率所面临的挑战之一。超疏水技术为上述挑战提供了一个理想的解决方案,其表面微纳结构与低表面能相结合,使液体稳定地停留在微结构的顶部,形成低固—液接触的Cassie-Baxter润湿状态,从而显著降低水的阻力和粘附力。然而,超疏水表面在深水和流体冲击条件下难以维持其超疏水性,仅能承受0.03~2.3m的静水压力,一旦失去超疏水性,其减阻和低粘附性能都将丢失。
针对上述问题,作者观察到水生植物大薸的叶片具有优异的超疏水性,并展现出较好的抗水压能力和低的固—液粘附,这一特性归因于叶片绒毛状微结构的自适应形变及其表面独特的内凹几何特征。在水压作用下,这些微结构会发生形变,通过增加固—液接触面积来提升抗水压能力;而内凹特征提高了微结构表面的临界抗刺穿压力,确保其在高水压下进入形变抗压模式。同时,内凹几何特征提高了微结构的形变阈值,可促进高模量微结构形变响应,有利于形变后的气层恢复,使固—液粘附力始终保持在较低水平。
基于上述原理,作者发展了仿生自适应超疏水表面的设计策略,其抗水压性能提高了约183%,受压后的粘附力降低了约80%。这种自适应超疏水材料为进一步提升两栖飞机以及其他跨介质航行器的作业性能提供了一种新的设计思路。
相关论文信息:https://doi.org/10.1002/adma.202412702
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。