|
|
中科院大连化物所电荷掺杂量子点动力学研究取得系列新进展 |
|
近日,中国科学院大连化物所分子反应动力学国家重点实验室光电材料动力学吴凯丰研究员团队采用电荷掺杂纳米晶量子点构建模型体系,结合飞秒瞬态吸收光谱动力学测试,揭示了纳米晶在多电子光催化和光电转换应用中的一系列重要动力学过程。相关工作分别发表于《美国化学会志》(Journal of the American Chemical Society)、《化学科学》(Chemical Science)和《物理化学快报》(The Journal of Physical Chemistry Letters)。
太阳能到燃料的转换过程(如水分解、CO2还原、固氮等)涉及的通常都是多电子光催化反应。在反应中,捕光材料需要连续吸收多个太阳光子,并且每个光子被吸收后都能驱动从捕光材料到催化剂的有效电荷分离。受研究体系和研究手段的限制,以往文献中报道的超快光谱研究通常只关注吸收一个光子后的单步电荷分离。这些工作报道的电荷分离效率通常都很高(甚至接近100%),然而整个多电子光催化反应的效率通常只有10%的量级,两者之间存在巨大的差异。
吴凯丰研究团队提出,在多电子光催化反应中,由于电子与空穴转移速率的欠匹配以及催化剂翻转速率较慢,吸光材料和催化剂上都会存在积累电荷,这些积累电荷将大大降低后续的电荷分离效率。为此,该研究团队采用电荷预掺杂的纳米晶量子点构建模型体系,分别研究了捕光材料和催化剂上的积累电荷对电荷分离速率和效率的影响,揭示了积累电荷产生的库伦势垒减慢电荷转移速率、电荷复合途径的增加缩短电荷分离态的寿命以及积累电荷带来的额外复合渠道(如俄歇复合等)降低电荷分离效率等基本物理化学现象。相关工作以“连载”标题形式发表于《美国化学会志》。
除了用于模拟多电子光催化反应的中间步骤,电荷掺杂还可用于鉴别一些复杂的异质结纳米晶的能级排布和测量其中的载流子复合动力学。半导体异质结纳米晶可展现出单一组分纳米晶所不具备的光电性质,因此是一类重要的光电材料。决定这些性质最为关键的一个因素就是异质结中不同组分间的能级排布:I型能级排布可在空间上限域电子和空穴,适合做发光材料;II型或者准II型能级排布则可在空间上实现电子和空穴的分离,适合于太阳能转换等应用。
考虑到电荷掺杂对研究纳米晶光谱和动力学性质的重要性,该研究团队还发展了一种针对欠稳定材料的“无损”动态掺杂方法。以铅卤素类钙钛矿纳米晶为例,此类材料展现出优异的发光和光电转换性质;然而受限于其化学稳定性,目前尚无在带边成功掺入电荷的报道。