很多科学家认为,2012年将是“上帝粒子”现身之年;媒体也大都将焦点聚集在位于瑞士日内瓦的大型强子对撞机(LHC)之上,人们迫切期望LHC能在今年搜寻到被称为“上帝粒子”的希格斯玻色子的“芳踪”,为人类了解宇宙进而了解人类自身提供更多的线索。与此同时,也有一些科学家正在潜心从事一些同搜寻希格斯粒子一样具有挑战性的实验,虽然这些科学家以及他们的实验并非那么广为人知,但其作用同寻找“上帝粒子”一样,都是为了解开盘旋在人类心中很久的一些谜团。英国《自然》杂志网站近日为我们列举出了如下5大颇具挑战性的实验。
寻找外星生命的“蛛丝马迹”
美国哈佛—史密森尼天文物理中心的天文学家大卫·夏邦诺1999年时还只是哈佛大学的一名研究生,但是,他首次观测到了另一个太阳系的一颗行星通过其母星表面时,母星光度的轻微下降。现在,这样的“凌日”法是天文学家们发现行星的重要方法。科学家们可以借用这一方法了解行星和其大气的结构。当行星经过其母星,母星光线便会经过行星的最外层大气,通过仔细分析该母星的光谱,便能得知该行星的大气成分。如果科学家们能证实行星的大气中确实包含有氧气,那可能暗示这一行星上存在生命。但是,探测到氧等元素的唯一方法是在通过该行星大气的星光光谱中找到它们,而这种信号非常弱。
夏邦诺解释说:“起初,行星遮住的光线很少,一颗木星大小的行星行经一颗类似太阳的恒星时,会遮蔽约1%的光。而一颗更小的、地球一样大小的行星可能只能遮蔽约0.01%的光。接着,我们会看到该行星周围的‘洋葱皮’,那就是大气。”仅仅只有通过洋葱皮的星光拥有天文学家们正在寻找的光谱信息,然而,对于像太阳一样大小的恒星和像地球一样大小的行星来说,这无异于大海捞针。因此,利用“凌日”法了解系外行星存在诸多困难。
不过,夏邦诺表示,尽管目前还没有望远镜拥有探测到太阳本身的光线发出的微小信号所需要的灵敏度,但是,木星大小的气体巨星的大气比地球大小的气体巨星的大气大,相应地,其光谱信息也更多。自2005年开始,哈勃太空望远镜和斯皮策太空望远镜等轨道望远镜已经采集到了大约40个气体巨星的大气光谱。夏邦诺说:“尽管最初的观察结果受到了科学家们的质疑,因为这些气体巨星并非那么普通,也并非那么富有争议。然而,这是我们迄今获得的与类地行星有关的所有信息,而且,以前没有人做到这一点。”
科学家们的最新研究成果是获得了“超级地球”GJ 1214b的光谱,该行星的直径约是地球直径的2.6倍,距离地球仅40光年,环绕着一颗红矮星运行,是当前发现的唯一一颗超级地球系外行星——质量在地球和海王星之间,并具备稳定的大气层。科学家们对这一行星进行的分析表明,该行星的大气中充满了水蒸气或者云,而几个月前,夏邦诺和同事使用哈勃望远镜也证实了这一点。
探测一颗类日恒星周围的一颗类地行星的大气结构为我们提供了最好的机会,让我们得以探测该行星上的生物活动,不过,这种探测仪需要具备极高的灵敏度。夏邦诺热切期望美国国家航空航天局(NASA)计划了很长时间且多次延迟发射的哈勃望远镜的继任者——耗资80亿美元、预计将于2018年发射的詹姆斯·韦伯空间望远镜确实能按时进入预定轨道。他说:“如果情况真这样就好了,我们或许可以依靠它在其他星球上找到生命。”
看穿手性分子的“镜像”
生物学上存在着一种奇妙的不对称,存在着一些化学中结构上镜像对称而又不能完全重合的分子,这两种分子拥有完全一样的物理、化学性质。但是从分子的组成形状来看,它们依然是两种分子。这种情形像是镜子里和镜子外的物体那样,看上去互为对应。由于是三维结构,它们不管怎样旋转都不会重合,就像左手和右手那样,因此,科学家们将其称为手性分子。当化学家们在实验室制造这种分子时,一般会得到两种形式的混合分子,而且,依照惯例,会给它们贴上左手性或右手性的标签。但活细胞一般仅仅由左手性分子制造而成,没有人知道为什么会这样。
一种可能的解释是,标准粒子物理模型预测的自然界中四种基本力中的一种——弱相互作用调停着原子核和电子之间的某些相互作用,其对左手性和右手性分子的影响不同;而包括重力在内的其他力在每个版本的镜像宇宙中都是一样的。法国巴黎第13大学的伯努特·达奎解释道,从理论上而言,弱相互作用或许导致一种形式的手性分子同其镜像“双胞胎”分子的能态稍微有些不同,大约有1015分之一到1020分之一的差异。因此,如果一种形式的手性分子的振动频率为30太赫(频率单位,等于百亿赫),那么,它与对应的另一种手性分子的振动频率之间的差异仅为几豪赫兹甚至几微赫兹。
达奎表示,测量出这样的细微差异可能有助于我们解决生物学上的这个不对称难题,他的团队也正致力于做到这一点。这种差异甚至能让我们获得标准模型的弱相互作用理论的某些参数的值。
据达奎所知,他们的研究团队是目前全球唯一试图解决这一难题的团队。他花费了整整3年来组建这个由实验物理学家、量子理论学家以及化学家组成的实验团队。他们现在需要解决两个问题:首先,他们需要制造出分辨率极高的光谱仪来测量手性分子的能级。迄今最好的光谱仪能够识别出5/1014的能级差别,而他们需要的光谱仪的清晰度将约为目前市面上最好的光谱仪的100万倍。他们现在正在制造一个精确度更高的光谱仪。为了达到这样的灵敏度,他们的机器不能受到任何外部振动的影响,而且需要稳定地维持在0.1摄氏度以内。另外,为了能在测量分子振动频时获得所需要的精确度,达奎的实验室使用了一个分子时钟,其通过一个光纤网络与位于法国巴黎的世界时间标准原子钟相连。
科学家们面临的第二个挑战是制造出测试分子,且测试分子的不对称效应要大到足以被测量出来。因此,这个分子的中央原子应该很大,因为原子理论认为,这样会让不同形式的手性分子之间的能态差异最大,而且,当将其加热到光谱仪所要求的气体状态时,分子本身也不会分崩离析。该研究团队认为,最好的分子很有可能是甲基三氧化铼这样的分子,其两个氧原子被硫和硒所取代。不过,即使科学家们发现了一个能很好地用来做实验的分子,他们仍然需要一年时间来进行足够多的测试工作以增加信号与噪音之间的比率并得到更准确的数据。达奎表示:“问题越困难,当你解决它的时候,你就会越高兴。”
达奎表示,即使他们的实验并不能解决生物学上的这一难题,他们也不会因此而失望,因为,他们正在研发的技术将可用于对很多基础物理学理论进行测试。他说:“科学家们正在对能级更高或更低的粒子进行精确的测量,分子越复杂,测量需要解决的问题就更多,因此,我们正在研究的技术和工具将大有用武之地。”
寻找额外的空间维度
我们一直认为世界只拥有三维立体空间——左右、前后、上下,我们也认为这是一个颠扑不破的真理,无法想象还会有与其不同的情况。但超弦理论和其他试图设计出统御世界的“万物之理”的诸多尝试让很多物理学家提出了一个新观点:空间不仅仅只有三个维度。其他额外的维度很可能紧密地簇拥在一起,并因此而藏匿于我们的日常经验之外。不过,这些额外的维度也并非完全隐形,它们会对牛顿经典重力理论所预测的重力产生非常轻微的影响。能够探测到重力在这种尺度上的细微变化的实验因此能“看到”任何其他的维度。
美国华盛顿大学实验核物理和天体物理学中心的艾瑞克·阿德尔伯格于1999年首次听说了这种想法。他说:“有些人认为这种想法很疯狂,但是,也有些人认为这一想法很酷。”他和同事决定亲自测试这一想法。“还有比发现我们对世界维度的理解是错的更令人兴奋的事情吗?”
阿德尔伯格团队选择的工具是扭秤。他们对英国杰出的物理学家和化学家亨利·卡文迪什在上世纪70年代晚期首次用在实验室测量重力的扭秤进行了改良。在他们设计的现代版扭秤中,一个金属圆筒悬挂于一条丝线下,因此,圆筒能自由地扭转。圆筒底部黏贴着一个名为探测器的圆盘,圆盘上钻满了一圈小洞。距离第一个圆盘几微米之下的地方放置有第二个具有同样钻洞的名为吸引盘的圆盘。当该吸引盘旋转时,其上的小洞之间的物质会对名为探测器的圆盘上的小洞之间的物质施加一个微小的引力。这种力会让悬挂圆筒的丝线发生扭曲,导致圆筒旋转几十亿分之一度。
为了确保探测器圆盘是对重力而非其他力作出反应,以上设备必须完全由非磁性材料制成,并且所有材料的表面都需要用金包裹以便让电荷在设备上传播开来。这些设备也必须被制作得非常完美且不能受到任何震动(包括汽车驶入外面的停车场产生的震动等)的影响。阿德尔伯格表示:“我们在周末午夜到凌晨四点得到的数据最好。得到好数据的时间实在太短暂了,这令人有点沮丧。”
迄今为止,阿德尔伯格团队能够确定的是,不存在大于44微米的额外维度。他的两名研究生以及全球其他科研团队正努力让这一极值变得更小。但是,他表示,额外的维度越小,他们所需要耗费的时间就越长。他说:“如果存在着一个30微米的维度,那么,验证它的存在将花费1年。”
但是,阿德尔伯格似乎不惧这种不确定性和可能面临的诸多困难,他相信他们一定会成功。他说:“事情越困难,当你解决事情的时候,你的感觉就越好。”
1 2 下一页