作者:Kunlong Yang et al 来源:npj Flexible Electronics 发布时间:2018/9/21 13:55:07
选择字号:
可调谐的柔性人工突触:通向可穿戴电子系统的新途径

电气与电子工程

#电子与自旋电子元件

可调谐的柔性人工突触:通向可穿戴电子系统的新途径

论文标题:Tunable flexible artificial synapses: a new path toward a wearable electronic system

期刊:npj Flexible Electronics

作者:Kunlong Yang et al

发表时间: 2018/7/23

数字识别码:10.1186/s41528-018-0033-1

原文链接:https://www.nature.com/articles/s41528-018-0033-1?utm_source=Other_website&utm_medium=Website_linksWebsite_links&utm_content=JesGuo-Nature-npj_Flexible_Electronics-Engineering_of_Electrical_and_Electronic-China&utm_campaign=NPJ_USG_JRCN_JG_NPJ_Tunable

人工突触:具有机械和突触灵活性的记忆晶体管

基于记忆晶体管的机械柔性人工突触,可以表现出不同类型的突触可塑性。突触是神经形态计算的一个基本组成部分(一种大脑启发计算方法,旨在提供较传统方法而言更为高效的计算方法)。 目前,Yiqiang Zhan,Lirong Zheng和Fernando Seoane与来自瑞典和中国的合作者们,报道了一种人工突触,该突触是基于具有机械柔性的记忆晶体管设计的。 这种突触设计的关键是一个三端结构,它可以进行栅极调谐。 通过调节栅极端上的电压,使得器件的变化能够得到补偿,从而提高突触的一致性和可重复性。 研究人员还发现栅极调谐可以将每次峰值事件的总能量消耗降低至45 fJ,并展示了对于复制神经形态行为很重要的各种突触塑性特征。

摘要

柔性电子元件一直被认为是实现可穿戴电子系统的有效方法。然而,由于传统的计算模式无法与现有的柔性器件相匹配,导致该领域的发展停滞不前。本研究提出了一种可实现这一目标的新方法,即将柔性器件与神经形态架构结合在一起。通过精心设计和优化记忆晶体管,创建一种高性能的柔性人工突触。该器件性能好,可在515%动态范围内,实现在10,000个相同脉冲信号下,具有接近线性的非易失性电阻变化,并且每个脉冲的能量消耗低至45fJ。它还拥有多个突触可塑性特征,使其可用于实时的在线学习。此外,由于其三端结构的适应性,该器件的一致性和可重复性得到提高,同时还可降低能耗。 这项工作为未来的可穿戴计算提供了一个非常可行的解决方案。

原理示意图和工作机理。 (a)一种生物突触和(b)人工突触的原理示意图。

Abstract:

The flexible electronics has been deemed to be a promising approach to the wearable electronic systems. However, the mismatching between the existing flexible deices and the conventional computing paradigm results an impasse in this field. In this work, a new way to access to this goal is proposed by combining flexible devices and the neuromorphic architecture together. To achieve that, a high-performance flexible artificial synapse is created based on a carefully designed and optimized memristive transistor. The device exhibits high-performance which has near-linear non-volatile resistance change under 10,000 identical pulse signals within the 515% dynamic range, and has the energy consumption as low as 45 fJ per pulse. It also displays multiple synaptic plasticity features, which demonstrates its potential for real-time online learning. Besides, the adaptability by virtue of its three-terminal structure specifically contributes its improved uniformity, repeatability, and reduced power consumption. This work offers a very viable solution for the future wearable computing.

阅读论文原文,请访问

https://www.nature.com/articles/s41528-018-0033-1?utm_source=Other_website&utm_medium=Website_linksWebsite_links&utm_content=JesGuo-Nature-npj_Flexible_Electronics-Engineering_of_Electrical_and_Electronic-China&utm_campaign=NPJ_USG_JRCN_JG_NPJ_Tunable

(来源:科学网)

 
 
 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
以下评论只代表网友个人观点,不代表科学网观点。

 
相关新闻 相关论文

图片新闻
恐龙筑巢护蛋 走进“模拟火星基地”
谁杀死了伦敦麻雀 “华龙一号”全球首堆外穹顶封顶完成
>>更多
 
一周新闻排行 一周新闻评论排行
 
编辑部推荐博文
 
论坛推荐