木质纤维素变身航空燃料
木质纤维素作为一种可再生碳资源,将其转化为运输用液体燃料对保证我国能源安全和我国的二氧化碳减排均非常重要。
近日,中国科学院大连化学物理研究所航天催化与新材料研究室研究员李宁、中科院院士张涛团队,与大连化物所生物能源研究部研究员路芳团队、天津大学化工学院教授邹吉军团队合作,在长期从事生物质转化研究基础上,首次报道了将纤维素两步法转化为高密度液体燃料。相关工作发表在《焦耳》上。
在该工作中,科研人员首次报道了一种将不可食用的纤维素转化为高密度航空煤油的方法:首先,采用氢解反应高选择性地将纤维素转化为2,5-己二酮,并通过反应分离的方法,最终获得71.4%的2,5-己二酮分离碳收率;随后,采用一个双床层催化系统通过羟醛缩合-加氢-加氢脱氧反应,将2,5-己二酮转化为具有支链结构的C12和C18的多环烷烃燃料,碳收率为74.6%。该过程获得的多环烷烃具有高密度(0.88g/mL)和低冰点(225K)的特性。在实际应用中,该产物可作为高密度先进航空燃料单独使用;亦可以作为燃料添加剂,提高航空煤油的体积热值。
相关论文信息:DOI:https://doi.org/10.1016/j.joule.2019.02.005
高CO2耐受工业产油微藻诞生
工业微藻能够将阳光和烟道气直接转化为生物柴油,被认为是应对全球气候变暖的重要举措之一。然而烟道气中高浓度的CO2及其导致的酸性培养条件,往往抑制了微藻的生长,因此提高CO2耐受性是设计与构建超级光合固碳细胞工厂的关键瓶颈之一。近期,中国科学院青岛生物能源与过程研究所单细胞中心通过逆转进化时针的研究思路,率先阐明了工业微藻应对高浓度CO2的机制,并开发出高CO2耐受的工业产油微藻细胞工厂。该成果于3月21日在线发表于Metabolic Engineering。
青岛能源所单细胞中心魏力等研究人员,提出其利用和耐受CO2均与碳浓缩机制有关的科学假设。首先,运用系统生物学思路,结合亚细胞定位等研究手段,挖掘到与高CO2应激相关的一个关键靶点,即位于细胞质内的一个特殊的碳酸酐酶(Carbonic anhydrase;CA2)。与CO2浓度为5% 培养下相比,CA2在极低CO2浓度下被特异性地激活,因此是CCM系统感受与应对环境中CO2浓度的关键基因。
实验证明,在CO2浓度为5% 下,靶向敲低CA2基因的工程微拟球藻株,其生物质产量能提高超过30%,而且含油量不受影响。这一优良性状在多种类型的光培养设施和多种空间尺度的培养规模下均能展现,而且具有相应的遗传稳定性。
进一步研究发现,CA2的敲低,显著改善了胞内pH值微环境,从而缓解了胞外高浓度氢离子对于细胞的毒害作用,最终维持了生物量的增长。有趣的是,工程藻株的生长优势只在烟道气培养条件下展现,若在空气浓度CO2下,工程藻株则丧失了生长优势。因此,该研究不仅证明工业微藻CO2含量适应性可以理性调控,而且发明了一种原创的工程藻株生态控制策略。
相关论文信息:DOI:https://doi.org/10.1016/j.ymben.2019.03.004
(北绛整理)
《中国科学报》 (2019-04-01 第7版 能源化工)