期刊名:Machines
期刊链接:https://www.mdpi.com/journal/machines
机械维护是机械设备使用过程中不可或缺的一部分,对于保证机械设备的性能和安全至关重要。这份“机械维护”方向的文献清单,希望能带你了解“机械维护”方向的研究进展!
1.
英文标题:Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes
中文标题:基于k均值聚类算法的风电机组SCADA数据预测性维护探索性分析
文章链接:https://www.mdpi.com/2075-1702/11/2/270
MDPI引用格式:Rodriguez, P.C.; Marti-Puig, P.; Caiafa, C.F.; Serra-Serra, M.; Cusidó, J.; Solé-Casals, J. Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes. Machines 2023, 11, 270. https://doi.org/10.3390/machines11020270
2.
英文标题 Balanced K-Star: An Explainable Machine Learning Method for Internet-of-Things-Enabled Predictive Maintenance in Manufacturing
中文标题 平衡K-Star:一种可解释的机器学习方法,用于制造业中物联网支持的预测性维护
文章链接:https://www.mdpi.com/2075-1702/11/3/322
MDPI引用格式 Ghasemkhani, B.; Aktas, O.; Birant, D. Balanced K-Star: An Explainable Machine Learning Method for Internet-of-Things-Enabled Predictive Maintenance in Manufacturing. Machines 2023, 11, 322. https://doi.org/10.3390/machines11030322
3.
Grouping Preventive Maintenance Strategy of Flexible Manufacturing Systems and Its Optimization Based on Reliability and Cost
基于可靠性和成本的柔性制造系统成组预防性维修策略及其优化
https://www.mdpi.com/2075-1702/11/1/74
Pei, Y.; Liu, Z.; Xu, J.; Qi, B.; Cheng, Q. Grouping Preventive Maintenance Strategy of Flexible Manufacturing Systems and Its Optimization Based on Reliability and Cost. Machines 2023, 11, 74. https://doi.org/10.3390/machines11010074
4.
Building a Digital Twin Powered Intelligent Predictive Maintenance System for Industrial AC Machines
工业交流机械数字双动力智能预测性维护系统的构建
https://www.mdpi.com/2075-1702/11/8/796
Singh, R.R.; Bhatti, G.; Kalel, D.; Vairavasundaram, I.; Alsaif, F. Building a Digital Twin Powered Intelligent Predictive Maintenance System for Industrial AC Machines. Machines 2023, 11, 796. https://doi.org/10.3390/machines11080796
5.
Optimizing Predictive Maintenance Decisions: Use of Non-Arbitrary Multi-Covariate Bands in a Novel Condition Assessment under a Machine Learning Approach
优化预测性维护决策:在机器学习方法下的新条件评估中使用非任意多协变量带
https://www.mdpi.com/2075-1702/11/4/418
Godoy, D.R.; Álvarez, V.; López-Campos, M. Optimizing Predictive Maintenance Decisions: Use of Non-Arbitrary Multi-Covariate Bands in a Novel Condition Assessment under a Machine Learning Approach. Machines 2023, 11, 418. https://doi.org/10.3390/machines11040418
6.
Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life
基于动态概率分布预测剩余使用寿命的数据驱动预测性维护策略
https://www.mdpi.com/2075-1702/11/10/923
Xie, S.; Xue, F.; Zhang, W.; Zhu, J. Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life. Machines 2023, 11, 923.
7.
Adopting New Machine Learning Approaches on Cox’s Partial Likelihood Parameter Estimation for Predictive Maintenance Decisions
基于Cox偏似然参数估计的机器学习方法在预测性维修决策中的应用
https://www.mdpi.com/2075-1702/12/1/60
Godoy, D.R.; Álvarez, V.; Mena, R.; Viveros, P.; Kristjanpoller, F. Adopting New Machine Learning Approaches on Cox’s Partial Likelihood Parameter Estimation for Predictive Maintenance Decisions. Machines 2024, 12, 60. https://doi.org/10.3390/machines12010060
8.
Hybrid Method with Parallel-Factor Theory, a Support Vector Machine, and Particle Filter Optimization for Intelligent Machinery Failure Identification
基于并行因子理论、支持向量机和粒子滤波优化的智能机械故障识别混合方法
https://www.mdpi.com/2075-1702/11/8/837
Li, S.; Chen, H.; Chen, Y.; Xiong, Y.; Song, Z. Hybrid Method with Parallel-Factor Theory, a Support Vector Machine, and Particle Filter Optimization for Intelligent Machinery Failure Identification. Machines 2023, 11, 837. https://doi.org/10.3390/machines11080837
9. A Multi-Information Fusion ViT Model and Its Application to the Fault Diagnosis of Bearing with Small Data Samples
多信息融合ViT模型及其在小数据样本轴承故障诊断中的应用
https://www.mdpi.com/2075-1702/11/2/277
Xu, Z.; Tang, X.; Wang, Z. A Multi-Information Fusion ViT Model and Its Application to the Fault Diagnosis of Bearing with Small Data Samples. Machines 2023, 11, 277. https://doi.org/10.3390/machines11020277
10.
A New Methodological Framework for Optimizing Predictive Maintenance Using Machine Learning Combined with Product Quality Parameters
基于机器学习和产品质量参数的预测性维护优化方法框架
https://www.mdpi.com/2075-1702/12/7/443
Riccio, C.; Menanno, M.; Zennaro, I.; Savino, M.M. A New Methodological Framework for Optimizing Predictive Maintenance Using Machine Learning Combined with Product Quality Parameters. Machines 2024, 12, 443. https://doi.org/10.3390/machines12070443
11.
Digital Ergonomics—The Reliability of the Human Factor and Its Impact on the Maintenance of Aircraft Brakes and Wheels
数字工效学——人为因素的可靠性及其对飞机制动器和车轮维护的影响数字工效学-人为因素的可靠性及其对飞机制动器和车轮维护的影响
https://www.mdpi.com/2075-1702/12/3/203
Hovanec, M.; Korba, P.; Al-Rabeei, S.; Vencel, M.; Racek, B. Digital Ergonomics—The Reliability of the Human Factor and Its Impact on the Maintenance of Aircraft Brakes and Wheels. Machines 2024, 12, 203. https://doi.org/10.3390/machines12030203
12
Systems Reliability and Data Driven Analysis for Marine Machinery Maintenance Planning and Decision Making
船舶机械维修计划与决策的系统可靠性与数据驱动分析
https://www.mdpi.com/2075-1702/12/5/294
Daya, A.A.; Lazakis, I. Systems Reliability and Data Driven Analysis for Marine Machinery Maintenance Planning and Decision Making. Machines 2024, 12, 294. https://doi.org/10.3390/machines12050294
13.
A Review of Prognostic and Health Management (PHM) Methods and Limitations for Marine Diesel Engines: New Research Directions
船用柴油机预测与健康管理 (PHM) 方法及局限性综述:新的研究方向
https://www.mdpi.com/2075-1702/11/7/695
Gharib, H.; Kovács, G. A Review of Prognostic and Health Management (PHM) Methods and Limitations for Marine Diesel Engines: New Research Directions. Machines 2023, 11, 695. https://doi.org/10.3390/machines11070695
14.
Compound Uncertainty Quantification and Aggregation for Reliability Assessment in Industrial Maintenance
工业维修可靠性评估的复合不确定性量化与聚合
https://www.mdpi.com/2075-1702/11/5/560
Grenyer, A.; Erkoyuncu, J.A.; Addepalli, S.; Zhao, Y. Compound Uncertainty Quantification and Aggregation for Reliability Assessment in Industrial Maintenance. Machines 2023, 11, 560. https://doi.org/10.3390/machines11050560
15.
Implementation and Possibilities of Fuzzy Logic for Optimal Operation and Maintenance of Marine Diesel Engines
模糊逻辑在船用柴油机优化运维中的实现与可能性
https://www.mdpi.com/2075-1702/12/6/425
Gharib, H.; Kovács, G. Implementation and Possibilities of Fuzzy Logic for Optimal Operation and Maintenance of Marine Diesel Engines. Machines 2024, 12, 425. https://doi.org/10.3390/machines12060425
Machines 期刊介绍
主编:Antonio J. Marques Cardoso, University of Beira Interior, Portugal
主要发表机械设备故障诊断和预测、机械设计、机电一体化、机器人、叶轮机械、控制及自动化、电机和驱动器、先进制造等领域的最新学术成果。
2024 Impact Factor
|
2.5
|
2024 CiteScore
|
4.7
|
Time to First Decision
|
15.5 Days
|
Acceptance to Publication
|
2.6 Days
|
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。