来源:Frontiers of Optoelectronics 发布时间:2020/9/16 14:41:26
选择字号:
FOE | 浙江大学林宏焘教授课题组:石墨烯与光结合会产生什么

论文标题:Graphene-based all-optical modulators (基于石墨烯的全光调制器)

期刊:Frontiers of Optoelectronics

作者:Chuyu ZHONG(钟础宇), Junying LI, Hongtao LIN(林宏焘)

发表时间:28 June 2020

DOI: 10.1007/s12200-020-1020-4

微信链接:点击此处阅读微信文章

《Frontiers of Optoelectronics》期刊近日发表了浙江大学信息与电子工程学院林宏焘研究员课题组撰写的有关基于石墨烯的全光调制器件的综述性论文,该文章总结了基于石墨烯的全光调制的多种机理以及器件形式,对基于不同调制原理以及器件类型的器件进行了广泛的介绍,并进行比较分析,为未来的全光调制器特别是二维材料全光调制器提供有价值的参考。

Graphene-based all-optical modulators

Chuyu ZHONG, Junying LI, Hongtao LIN

Front. Optoelectron.. 2020, 13 (2): 114-128.

研究背景

随着信息化进程的发展,下一代信息处理技术对调制器件的集成度、速度、功耗等方面提出了新的需求,科研人员需要探寻新的光调制材料和器件工作方式。全光调制器因其在光处理链路中无需电光转换,以及可以实现超快调制的特点,在未来的光电信息处理技术中具有重要应用前景。同时,石墨烯作为具有超短响应时间的一种二维材料,被引入到全光调制中。由于其独特的结构以及能带特性,石墨烯可以与多种微纳光子结构进行灵活集成,构成不同形式的超快全光调制器。

浙江大学林宏焘研究员课题组在本论文中总结讨论了基于石墨烯的全光调制器的调制原理以及不同的器件形式。所讨论的四种调制原理包括热光效应、光致载流子调制效应、光克尔效应以及可饱和吸收效应,其中可饱和吸收效应的响应时间可达亚皮秒量级。本论文还总结了三种形式的石墨烯全光调制器,包括空间光全光调制器、微光纤集成全光调制器以及波导集成型全光调制器。其中,空间光调制器以及光纤器件的制备较为便利。然而,空间光与石墨烯相互作用较弱,需要利用共振效应提升调制效果。在微光纤集成器件中,信号光以光纤倏逝场的形式与石墨烯进行相互作用。这大大加大了相互作用强度,同时响应时间可达皮秒级别。但是,光纤中的功率密度仍然较大。对于在片集成型的器件,通过合理设计光子结构与石墨烯的集成形式,可以使得器件尺寸更小、石墨烯与光的相互作用强度更大。因而当前所报道的关于石墨烯全光调制的工作中,最低功耗以及最快速响应的器件由在片集成型器件所实现。

内容简介

本文介绍了浙江大学林宏焘研究员课题组关于石墨烯全光调制器的最新研究进展的调研:讨论了基于石墨烯全光调制的四种调制原理。介绍了空间光调制器型,微光纤集成型以及在片集成型石墨烯全光调制器的优势及挑战。这些研究揭示了石墨烯全光调制器在全光信息处理运算的巨大应用潜力。

图文导读

图1. 石墨烯全光调制器调制机理及响应时间

图2. 空间光调制的石墨烯全光调制器 [ACS Nano, 2012, 6(10): 9118–9124; Scientific Reports, 2014, 4(1): 7409; ACS Photonics, 2015, 2(11): 1513–1518]

图3. 微光纤集成石墨烯全光调制器 [Laser Physics Letters, 2013, 10(6): 065901; Nano Letters, 2014, 14(2): 955–959; Light, Science & Applications, 2015, 4(12): e360; Optics Express, 2015, 23(8): 10764–10770]

图4. 波导集成型石墨烯全光调制器 [ACS Nano, 2014, 8(11): 11386–11393; Scientific Reports, 2017, 7(1): 17046; Nanotechnology, 2018, 29(13): 135201; Applied Physics Express, 2019, 12(4): 042009]

图5. 超快超低功耗石墨烯全光调制器;(a)结构示意图及光场分布图,(b)Pump-probe测试法测量的响应时间曲线以及不同调制光能量下的调制深度曲线。[Nature Photonics, 2020, 14(1): 37–43]

摘要:All-optical devices, which are utilized to process optical signals without electro-optical conversion, play an essential role in the next generation ultrafast, ultralow power-consumption optical information processing systems. To satisfy the performance requirement, nonlinear optical materials that are associated with fast response, high nonlinearity, broad wavelength operation, low optical loss, low fabrication cost, and integration compatibility with optical components are required. Graphene is a promising candidate, particularly considering its electrically or optically tunable optical properties, ultrafast large nonlinearity, and high integration compatibility with various nanostructures. Thus far, three all-optical modulation systems utilize graphene, namely free-space modulators, fiber-based modulators, and on-chip modulators. This paper aims to provide a broad view of state-of-the-art researches on the graphene-based all-optical modulation systems. The performances of different devices are reviewed and compared to present a comprehensive analysis and perspective of graphene-based all-optical modulation devices.

PI简介

林宏焘,浙江大学信息与电子工程学院研究员、博士生导师、国家重点研发计划课题负责人。2010年获中国科学技术大学学士学位,2015年获美国特拉华大学博士学位,2015-2018年在美国麻省理工学院从事博士后研究。主要研究微纳光电子器件及芯片设计与制造,在硫基光电子及其在中波红外传感通信、新型二维材料光电子、柔性光电子集成等技术方面开展了系列工作,至今在包括Nature Photonics, Light: Science & Applications, Optica, Nature Communication, ACS Nano等发表期刊论文40余篇。论文引用次数超2200次,H指数25(google scholar)。所做成果曾入选美国光学学会旗下Optics & Photonics News杂志所评2014年度及2018年度光学领域重大进展。近两年主持科技部重点研发计划课题1项,国家自然科学基金面上项目1项,参与自然基金重点项目及科技部重点研发计划项目各1项。受邀担任中国激光杂志社青年编委、«红外与激光工程»青年编委。

课题组常年招聘博士后和研究生,欢迎有志于开拓集成光电子新疆域,有兴趣解决中波红外传感通信成像、硅基硫基三维混合集成、可重构全光信息处理链路等领域关键问题的博士和本科生联系(https://person.zju.edu.cn/hometown#931663)。PI邮箱:hometown@zju.edu.cn。

第一作者:钟础宇,2013年于武汉大学取得学士学位,2018年于长春光学精密机械与物理研究所获博士学位,博士期间主要进行垂直腔面发射激光器的研究。2018年入职浙江大学开展博士后研究工作,研究兴趣主要主要包括石墨烯全光调制器、硫系玻璃光电子及其在中红外波段上的应用。目前已发表第一作者SCI论文4篇,申请国家发明专利一项。

期刊简介

Frontiers of Optoelectronics (FOE)期刊是由教育部发起、高等教育出版社出版、德国施普林格(Springer)出版公司海外发行的Frontiers系列英文学术期刊之一,以网络版和印刷版两种形式出版。由北京大学龚旗煌院士、华中科技大学张新亮教授共同担任主编。

其宗旨是介绍国际光电子领域最新研究成果和前沿进展,并致力成为本领域内研究人员与国内外同行进行快速学术交流的重要信息平台。该刊的联合主办单位是高等教育出版社、华中科技大学和中国光学学会,承办单位是武汉光电国家研究中心。FOE期刊已被Emerging Sources Citation Index (ESCI), Ei Compendex, SCOPUS, INSPEC, Google Scholar, CSA, Chinese Science Citation Database (CSCD), OCLC, SCImago, Summon by ProQuest等收录。2019年入选中国科技期刊卓越行动计划梯队项目。

更多关于期刊的信息,请访问我们的网址:

http://journal.hep.com.cn/foe

http://link.springer.com/journal/12200

 
 
 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
银河系发现巨大黑洞 史上最亮伽马射线暴来自一颗坍缩的恒星
中国天眼揭秘宇宙“随机烟花” 导师:年年审毕业论文,总有这些问题!
>>更多
 
一周新闻排行 一周新闻评论排行
 
编辑部推荐博文