作者:张双虎 来源:中国科学报 发布时间:2022/3/29 13:52:01
选择字号:
挑战自旋成像系统“无人区”
——记国家重大科研仪器研制项目“电子自旋和自旋极化电流时空演化成像系统”

 

“就像船在大海中遇到10米巨浪,但舱内桌子上水杯中的水却稳到没有一丝肉眼可见的细纹。”谈到团队研制的电子自旋和自旋极化电流时空演化成像系统的稳定性,复旦大学物理系教授沈健这样类比。

在国家自然科学基金国家重大科研仪器研制项目支持下,沈健团队挺进科研仪器研制“无人区”,将飞秒超快自旋显微技术、音叉式自旋结构显微技术、自旋极化电流显微技术相结合,研制出技术指标明显领先国际同类商用仪器的成像系统。目前,该项目已获国内、国际专利授权9项,在《科学》《自然》等期刊发表论文8篇,培养出大批优秀人才。

学界的共同难题

电子自旋是凝聚态和材料物理学中许多奇妙现象的根源。从凝聚态物理角度来说,几乎所有的重大现象,比如高温超导、庞磁阻、多铁效应、量子霍尔效应等都和电子自旋有关。

“要理解这些重大现象,必须表征电子自旋结构和自旋动力学。”沈健对《中国科学报》说,“通俗点讲,就是要看清电子自旋如何在空间排列,并弄清其运动轨迹、运动状态,才能真正理解这些现象的本质。”

理解电子自旋与量子材料物性的关联,并在自旋器件中做到高效自旋输运,是目前自旋相关研究的关键。而解决这个关键科学问题的最大技术瓶颈就是如何表征电子自旋及其动力学过程。

沈健解释说,由于电子自旋之间的相互作用在空间上具有多尺度特征,在时间上具有超快响应频率,其本身又有静态(自旋结构)和动态(自旋动力学)的区别,尤其是在自旋器件中,自旋随电荷处于流动状态。

“人们‘看清’电子自旋的难度,就像在太空中观察地球时,能够清楚地看见上面的一个足球。”沈健补充说,“而且,我们不仅要看见这个足球,还要弄清它在比赛中是怎么被传递的,甚至还要以十万亿分之一秒的时间精度,看清它的运动轨迹。因此,同时在单原子的空间尺度和飞秒的时间尺度看清电子自旋是目前国际科学界面临的重大挑战。”

“到目前为止,科学家要么只能在单原子尺度看见静态的电子自旋,要么只能牺牲空间分辨率,在百纳米尺度研究电子自旋的超快动力学过程。”该团队成员之一、复旦大学教授吴施伟说,“我们就是要做一个显微镜或成像系统,它既能看见单独的电子自旋,又能在飞秒尺度上看清电子的自旋轨迹。”

五级减震挑战

2015年,该团队承担的科研仪器研制项目执行初期,一条来自上海市政方面的“大消息”让项目组忧心忡忡:上海市规划的地铁10号线延长线紧邻学校。地铁最近的地方,离该团队的地下实验室不足百米。

此前,国内高校就曾传出学校附近的地铁震动影响科学实验的消息。而在原子尺度上看电子自旋,对背景噪声水平要求极高,任何外界极细微的扰动,都会影响该系统的成像效果。

当时,能不能在这里建实验室、采取什么样的避震措施成为项目组讨论的焦点。经过多轮研讨,该团队制定出一套减震方案,虽然理论推算上能自洽,但实际上是否可行,大家意见并不一致。

“上海处在一个冲积平原上,土质很软。”该团队成员之一、复旦大学教授殷立峰说,“地铁经过时的震动,对仪器影响会非常大。”

最后,该团队和上海市政方面协调,找来几辆满载的重型土方车,沿着地铁线路行驶,尽可能模拟地铁运行所造成的恶劣环境,从而获得震动的一手数据。

“当百米开外的满载土方车开过时,我们在实验室中测到了强烈的2.5赫兹震动,震动强度比平常高了一个数量级,所以地铁的影响非常明显,大概与我们无液氦制冷机所产生的震动相当。”吴施伟说。

经过多次努力和尝试,该团队制定了一套特殊的“五级减震”方案。按照该方案,他们将仪器安放在实验室墙角一个特定位置,然后安装上能探测震动大小,并据此主动调节气压的“气浮”平台,再给扫描隧道显微镜镜头安装两级波纹管隔离制冷震动,最后通过扫描头的弹簧和探针不同的频率特性,阻断剩余的高、低频两种震动。

经多轮评估,专家组认为这种“五级减震”方案在理论上可行,有机会使震动减少7个数量级,即达到“船在惊涛骇浪里剧烈颠簸,杯中水面纹丝不动”的效果。

2021年6月,该项目进行正式验收时,上海的地铁10号线延长线已经投入运营半年多了。在这样的测试环境下,该系统测试的所有16项指标均达到或优于项目计划。

“现在我们的减震效果完全达到最好的液氦制冷商业仪器的同一水准。”吴施伟补充说,“地铁经过或开关制冷压缩机完全看不出任何差别。”

蹚出两条路

“这套系统有两大亮点:一是减震系统;二是在减震条件下的无液氦制冷技术。”沈健介绍说,“除对稳定性要求极高外,该系统对温度条件要求也十分苛刻。”

极低温制冷技术通常有两种:一是利用压缩机制冷;二是使用液氦制冷。国际上多采用液氦来制造极低温条件,但我国是贫氦国家,液氦供应受制于人。

“液氦特别昂贵,大量使用液氦来做实验,成本也几乎到了难以承受的地步。”沈健说,“所以,无液氦制冷就成为一个新的技术发展方向。”

但制冷压缩机本身就是巨大的震动源,用在对震动极其敏感的仪器上,影响自不必言。项目进行中,该团队再次陷入技术路线的巨大争议。经过反复的讨论与争论后,该团队决定采用两条技术路线,即尝试大幅减震条件下的无液氦制冷技术。

“我们团队有个特点,每两周有全组(包括学生)的大讨论,讨论技术路线、审视各种方案。”该团队成员之一、复旦大学教授高春雷说,“之所以采取两条路线,实际上是因为当时谁也说服不了谁,干脆各选一条路向一起汇合。”

该团队成员之一、博士后孙泽元说:“我们团队配备有数名设计、加工、焊接方面的专业技术人员,所以一些新的想法很快就能进行测试,这大大加快了研发进度。”

就这样,该团队首次实现了2 K(K氏温度)低温无液氦制冷,同时在低噪环境下成像的重大突破(最低1.2 K,远低于国际上无液氦制冷同类商业仪器9 K的技术指标)。目前,该系统在精度、时间分辨率和低温条件等方面均领先国际水平。

“和液氦技术相比,我们这个系统的优势之一是可以长时间运行(液氦技术需要定期停机补充液氦)。”殷立峰说,“另一个优势是可以在1.2 K到300 K之间任意改变温度(液氦制冷仪器一般只能实现某几个固定温度)。”

目前,国际上还没有类似指标的成像系统,这让沈健等人“有点踏入无人区的感觉”。同时,他们又非常幸运,该团队两条技术路线最后都“走通了”,这也为今后无液氦低噪制冷技术提供了更多选择。

“说心里话,我们非常感谢国家自然科学基金对科研仪器研制项目非常大的支持力度,所以我们能做一些真正开创性的仪器研发,走进‘无人区’,挑战一些难度更大的事情。”沈健说,“对我们来说,它真正帮助我们在仪器研制上取得了长足的进步,同时,一批年轻科研人员也在这个项目中成长了起来。”

《中国科学报》:您认为科研仪器在科研中起着怎样的作用?

沈健:物理学是一门以实验为基础的科学,现代物理研究几乎离不开科研仪器。成像系统就像人的眼睛,在对物性的研究中,只有看得更清、研究得更细,对其中的物理才能理解得更加深刻,才能发现一些新现象。

本项目在自主研发中产生的一些新范式,也会带来基础研究的突破。基于研发过程中产生的无液氦低温隔振平台和原位自旋极化扫描隧道显微技术,我们厘清了二维磁性材料中层间堆叠结构和磁性耦合的关系,为二维磁体在非线性光学器件、自旋电子学器件上的应用打开了新维度,为面向实际科学问题和科学应用研究奠定了扎实的基础。

《中国科学报》:当前我国在该领域的科研仪器研制处于怎样的国际地位,面临怎样的挑战?

沈健:单从技术指标上看,目前我们的仪器明显领先于国际上同类商用仪器,但并未真正商业化,还处于实验阶段。我们自己用起来得心应手的仪器,别人用其做同样的实验可能就不行,因为这里面有太多的细节,所以我们还有很多工作要做。

《中国科学报》:下一步团队有哪些研究重点?

沈健:下一步,我们将推进该成像系统商业化进程,把它做成别人拿来就很容易使用的仪器。但这样一个尖端仪器,不是简单靠某几个人或哪个团队就能实现商业化的,会面临很大挑战。但是,国家花了很多钱,我们不能满足于研制一个只是自己课题组能用的仪器。

一方面,我们要让仪器更加成熟、稳定,能让同行拿来真正解决一些重大科学问题;另一方面,我们自己也有很多科学问题,需要借助尖端仪器来解决,这也是我们团队的努力方向之一。

 

 
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
江门中微子实验探测器主结构安装完成 这种导电聚合物可让光线扭曲
塔里木盆地顺北油气田再获“千吨井” 人工智能发现100万年前人类用火的证据
>>更多
 
一周新闻排行
 
编辑部推荐博文