东华大学化学化工生物工程学院教授鲁希华课题组首次实现利用温度触发的溶胶—凝胶化转变过程将温敏性纳米水凝胶光子晶体固定化,相关研究成果近日发表于《材料视野》,并被选为封面文章。
鲁希华、李雪婷为共同通讯作者,博士生李晓晓为第一作者,东华大学为第一单位。
具有温度响应性的基于聚N—异丙基丙烯酰胺(PNIPAm-based)的“软球”凝胶光子晶体(CPCs),在相变温度以上,由于颗粒急剧收缩,导致结构色以及晶体结构的消失。目前,常规解决方法是凝胶固定化,即将凝胶光子晶体通过不可逆的共价键“嵌入”另一个水凝胶基质中。该方法制备过程复杂、低效且耗时。因此,开发一种有效的方法来固定脆弱的基于聚N—异丙基丙烯酰胺的凝胶光子晶体具有重大意义。
为此,研究人员首次提出了在保持凝胶光子晶体有序结构前提下,利用温度触发的溶胶—凝胶化转变将基于聚N—异丙基丙烯酰胺纳米水凝胶光子晶体固定化。
研究团队首先制备了聚N—异丙基丙烯酰胺纳米水凝胶,以该纳米水凝胶为母液,引入丙烯酸(AA)单体,并引发原位聚合,制备了具有互穿网络(IPN)结构的聚N—异丙基丙烯酰胺/聚丙烯酸(PNIPAm/PAA)纳米水凝胶。待该纳米水凝胶自组装为凝胶光子晶体后,将温度升至相变温度以上,通过聚N—异丙基丙烯酰胺疏水基团之间的物理交联作用使具有互穿网络结构的纳米水凝胶发生原位溶胶—凝胶化转变。由于聚丙烯酸网络抑制了聚N—异丙基丙烯酰胺网络的收缩,因此,具有互穿网络结构的凝胶光子晶体在相变温度以上仍具有高度有序结构,且实现了晶体结构在溶胶-凝胶化过程中被固定。
同时,该研究团队还探讨了固定化具有互穿网络结构的凝胶光子晶体的条件,及凝胶光子晶体的浓度对凝胶化温度的影响。
专家表示,这项研究的意义在于提供了一种实现凝胶光子晶体结构固定化的新方法,这将是“软球”凝胶光子晶体领域的一个重要研究进展。
相关论文信息:https://doi.org/10.1039/D0MH01886D
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。