近日,美国加州理工学院Endres, Manuel团队研究了一个具有6100个高度相干原子量子位的镊子阵列。这一研究成果于2025年9月24日发表在《自然》杂志上。
光镊阵列已经改变了原子和分子物理学,现在形成了量子计算、模拟和计量等一系列领先实验的骨干。典型的实验捕获了数十到数百个原子量子位,最近实现的系统只有大约一个主题和原子,而没有定义量子位或演示相干控制。然而,缩放到具有长相干时间、低损耗和高保真成像的原子量子位的要求是量子科学进步的一个突出挑战和关键,特别是在量子纠错方面。
研究组通过实验实现了一个光学镊子阵列,在大约12,000个位置捕获了超过6,100个中性原子,同时在几个指标上超过了最先进的性能,这些指标奠定了平台的成功。具体来说,当缩放到如此大量的原子时,研究组人员展示了12.6(1)秒的相干时间,这是光镊阵列中超精细量子比特的记录。研究组展示了室温捕获寿命约为23分钟,实现了99.98952(1)%的创纪录成像存活率,成像保真度超过99.99%。
研究组提出了一个基于区域的量子计算计划,并展示了在大空间尺度上必要的保持相干的量子比特传输和拾取/丢弃操作,通过交错随机基准测试进行表征。该研究结果以及最近的发展表明,具有数千到数万个物理量子位的通用量子计算和量子纠错可能是近期的前景。
附:英文原文
Title: A tweezer array with 6100 highly coherent atomic qubits
Author: Manetsch, Hannah J., Nomura, Gyohei, Bataille, Elie, Lv, Xudong, Leung, Kon H., Endres, Manuel
Issue&Volume: 2025-09-24
Abstract: Optical tweezer arrays 1,2 have transformed atomic and molecular physics, now forming the backbone for a range of leading experiments in quantum computing 3–8, simulation 1,9–12, and metrology 13–15. Typical experiments trap tens to hundreds of atomic qubits, and recently systems with around one thousand atoms were realized without defining qubits or demonstrating coherent control 16–18. However, scaling to thousands of atomic qubits with long coherence times, low-loss, and high-fidelity imaging is an outstanding challenge and critical for progress in quantum science, particularly towards quantum error correction 19,20. Here, we experimentally realize an array of optical tweezers trapping over 6,100 neutral atoms in around 12,000 sites, simultaneously surpassing state-of-the-art performance for several metrics that underpin the success of the platform. Specifically, while scaling to such a large number of atoms, we demonstrate a coherence time of 12.6(1) seconds, a record for hyperfine qubits in an optical tweezer array. We show room-temperature trapping lifetimes of ~ 23 minutes, enabling record-high imaging survival of 99.98952(1)% with an imaging fidelity of over 99.99%. We present a plan for zone-based quantum computing 5,21 and demonstrate necessary coherence-preserving qubit transport and pick-up/drop-off operations on large spatial scales, characterized through interleaved randomized benchmarking. Our results, along with recent developments 8,22–24, indicate that universal quantum computing and quantum error correction with thousands to tens of thousands of physical qubits could be a near-term prospect.
DOI: 10.1038/s41586-025-09641-4
Source: https://www.nature.com/articles/s41586-025-09641-4
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html