近日,清华大学张强团队报道了聚合物电解质溶剂定制600 Wh kg-1锂电池。这一研究成果发表在2025年9月24日出版的《自然》杂志上。
聚合物电解质搭配富锂锰基层状氧化物(LRMO)阴极和无阳极电池设计被认为是最有前景的高能量密度和高安全系统之一。然而,不稳定的阳极形态变化和不可逆的阴离子反应在电解质-阴极界面诱发氧逸出和聚合物电解质的催化分解,导致界面降解严重,循环稳定性差。
研究组设计了一种内置的含氟聚醚基聚合物电解质,由强溶剂化聚醚和弱溶剂化氟烃悬垂组成,形成了富阴离子的溶剂化结构,并在阴极和阳极上形成了阴离子衍生的富氟界面层,以抵抗界面问题。LRMO正极材料表现出改善的氧氧化还原可逆性,并大幅减少了涉及氧的界面副反应。这种含有30wt%磷酸三甲酯的准固态聚合物电解质,使得LRMO正极在软包电池中实现了高面积容量的可逆循环(>8 mAh cm-2),在纽扣电池中展现出长期稳定性(25°C下>500次循环)。完全充电状态下的软包电池在针刺测试中表现出604 Wh kg-1(1027 Wh L-1)的能量密度和优异的安全性。因此,该研究为开发实用化的高能量密度、高安全性锂电池提供了有前景的方向。
附:英文原文
Title: Tailoring polymer electrolyte solvation for 600 Wh kg1 lithium batteries
Author: Huang, Xue-Yan, Zhao, Chen-Zi, Kong, Wei-Jin, Yao, Nan, Shuang, Zong-Yao, Xu, Pan, Sun, Shuo, Lu, Yang, Huang, Wen-Ze, Li, Jin-Liang, Shen, Liang, Chen, Xiang, Huang, Jia-Qi, Archer, Lynden A., Zhang, Qiang
Issue&Volume: 2025-09-24
Abstract: Polymer electrolytes paired with lithium-rich manganese-based layered oxide (LRMO) cathodes and anode-free cell design are considered one of the most promising high-energy-density and high-safety systems1,2,3,4. However, the unstable anode morphological changes and the irreversible anionic reactions at the electrolyte–cathode interfaces induce oxygen escape and catalytic decomposition of polymer electrolytes, resulting in severe interfacial degradation and poor cycling stability. Here we design an in-built fluoropolyether-based polymer electrolyte composed of strongly solvating polyether and weakly solvating fluorohydrocarbon pendants, creating an anion-rich solvation structure and thus anion-derived fluorine-rich interfacial layers on the cathode and anode to resist interfacial issues. The LRMO cathode exhibits improved oxygen redox reversibility with substantially reduced oxygen-involving interfacial side reactions. This quasi-solid-state polymer electrolyte with 30wt% trimethyl phosphate enables an LRMO cathode with a reversible high-areal-capacity cycling (>8mAhcm2) in pouch cells and long-term stability (>500 cycles at 25 °C) in coin cells, respectively. The pouch cells exhibit an energy density of 604Whkg1 (1,027Whl1) and excellent safety under a nail penetration at a fully charged condition. Our work, therefore, provides a promising direction for creating practical high-energy-density and high-safety lithium batteries.
DOI: 10.1038/s41586-025-09565-z
Source: https://www.nature.com/articles/s41586-025-09565-z
官方网址:http://www.nature.com/