近日,中国科学院力学研究所于长平团队报道了采用上游壁面吹吸的HyTRV模型高超声速边界层转捩大涡模拟研究。这一研究成果于2025年9月18日发表在《理论与应用力学快报》上。
为研究壁面吹吸对高超声速边界层转捩的影响,研究组采用大涡模拟(LES)方法对HyTRV模型在马赫数6、单位雷诺数107每米的来流条件下进行分析。该模型长度为1600毫米,壁面吹吸作用施加于迎风面前缘上游区域(距前缘450-750毫米)。计算结果表明:上游吹气会加速流向涡的失稳与破裂,促使迎风面涡区转捩提前发生,并增强边界层外部的湍流脉动强度;反之,上游吸气则能延迟转捩过程,抑制边界层外部区域的湍流脉动。
通过分析不同流向位置的压力脉动频谱发现:在迎风面x=1100毫米处,上游吹气会显著放大频率约为33 kHz的扰动波发展,该频率被推测与流向涡的不稳定模态相对应;而上游吸气则明显抑制了既有38 kHz频谱峰值。对流向/壁面法向温度场进行谱本征正交分解(SPOD)的结果表明:上游吹气使特征频率32.55 kHz处的第一SPOD模态能量贡献显著增加。
附:英文原文
Title: Large eddy simulations of hypersonic boundary layer transition on a HyTRV model with upstream wall blowing/suction
Author: Xuecheng Sun, Changping Yu, Xinliang Li, Chuanhong Zhang
Issue&Volume: 2025-09-18
Abstract: To investigate the effect of wall blowing/suction on hypersonic boundary layer transition, large eddy simulation (LES) is employed to analyze the HyTRV model under an incoming flow with a Mach number of 6 and a unit Reynolds number of 107 m-1. The model has a length of 1,600 mm, and wall blowing/suction is applied to the windward surface’s upstream region (450-750 mm from the leading edge). The computational results indicate that upstream blowing accelerates the destabilization and breakdown of the streamwise vortex, promotes earlier transitions in the windward vortex region, and enhances the turbulent fluctuation intensity in the outer boundary layer. Conversely, upstream suction delays the transition and suppresses turbulent fluctuations in the outer boundary layer zone. The pressure fluctuation spectra are analyzed at different streamwise positions. The results demonstrate that upstream blowing significantly amplifies the development of a disturbance wave with a frequency of approximately 33 kHz at x = 1100 mm on the windward side. This frequency is hypothesized to correspond to the streamwise vortex instability mode. In contrast, upstream suction markedly suppresses the preexisting spectral peak near 38 kHz. Spectral proper orthogonal decomposition (SPOD) is applied to the streamwise/wall-normal temperature field. The results revealed that upstream blowing substantially increases the energy contribution of the first SPOD mode at a characteristic frequency of 32.55 kHz.
DOI: 10.1016/j.taml.2025.100619
Source: http://taml.cstam.org.cn/article/doi/10.1016/j.taml.2025.100619
Theoretical & Applied Mechanics Letters:《理论与应用力学快报》,创刊于2011年。隶属于中国理论与应用机械学会,最新IF:3.4
官方网址:http://taml.cstam.org.cn/
投稿链接:https://www2.cloud.editorialmanager.com/taml/default2.aspx