当前位置:科学网首页 > 小柯机器人 >详情
单分子双锚设计通过溶剂化重建和阴极聚合实现极端条件下的锂金属电池
作者:小柯机器人 发布时间:2025/9/13 17:53:13


近日,北京化工大学陈仕谋团队报道了单分子双锚设计通过溶剂化重建和阴极聚合实现极端条件下的锂金属电池。相关论文发表在2025年9月10日出版的《德国应用化学》杂志上。

锂金属电池(LMB)已成为下一代高能量密度储能系统最有前景的候选者。然而,它们的实际应用受到传统碳酸盐电解质无法同时稳定锂金属阳极和LiNi0.8Co0.1Mn0.1O2(NCM811)阴极界面的阻碍,特别是在极端操作条件下。

研究组提出了一种使用3,5-二氟苯硼酸新戊二醇酯(DNE)的变革性分子设计,该设计将双界面稳定机制独特地集成在单个分子中。 与传统添加剂不同,DNE的路易斯酸B─O键化学锚定PF6阴离子,重建Li+溶剂化鞘,使富含氟化锂的固体电解质界面抑制枝晶和锂枝晶生长。同时,其环状硼酸酯在阴极表面进行原位聚合,形成过渡金属离子捕获网络,优化阴极电解质界面,减轻NCM811阴极的结构退化。

这种协同的双重作用机制使Li||NCM811细胞在极端条件下(4.7 V、60°C和5 C)具有出色的循环稳定性。此外,能量密度为331 Wh kg−1的1 Ah袋式电池在100次循环后保持98.8%的容量保持率。这种双界面分子锚定策略为开发适用于极端条件下操作的高性能LMB建立了一种设计范式。

附:英文原文

Title: Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization

Author: Ruizhe Xu, Anjun Hu, Wang Xu, Wei Yang, Fei Li, Yuanjian Li, Yongbiao Mu, Lin Zeng, Jianping Long, Shimou Chen

Issue&Volume: 2025-09-10

Abstract: Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule. Unlike conventional additives, DNE's Lewis acidic B─O bonds chemically anchor PF6 anions, reconstructing the Li+ solvation sheath to enable a lithium fluoride-rich solid electrolyte interphase that suppresses dendrites and lithium dendrite growth. Simultaneously, its cyclic borate ester undergoes in situ polymerization on the cathode surface, forming a transition metal ion-trapping network that optimizes the cathode electrolyte interphase and mitigates structural degradation in NCM811 cathodes. This synergistic dual-action mechanism endows Li||NCM811 cells with exceptional cycling stability under extreme conditions (4.7 V, 60 °C, and 5 C). Furthermore, a 1 Ah pouch cell with an energy density of 331 Wh kg1 maintains 98.8% capacity retention after 100 cycles. This dual-interface molecular anchoring strategy establishes a design paradigm for developing high-performance LMBs suitable for operations in extreme conditions.

DOI: 10.1002/anie.202513321

Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202513321

期刊信息

Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx