哈佛大学Terence D. Capellini小组近日取得一项新成果。经过不懈努力,他们提出了人类两足动物的进化分为两步。相关论文于2025年8月27日发表在《自然》杂志上。
以多方面的组织学、比较基因组学和功能基因组学方法为主题,研究小组确定了人类骨盆形态发生变化的发育基础,这些变化使两足动物成为可能。首先,研究小组观察到人类髂骨软骨生长板发生了异位移位,垂直于其他灵长类动物的髂骨生长方向。其次,该研究团队观察到不同于非人灵长类动物或人类长骨的异慢性和异位骨化变化。骨化始于后侧,与成纤维细胞(和软骨外周细胞)共同形成成骨细胞,与人类和灵长类动物的其他骨骼相比,骨化延迟。这两种转变的基础是软骨细胞-软骨膜-成骨细胞综合通路的调控变化,涉及SOX9-ZNF521-PTH1R和RUNX2-FOXP1/2之间复杂的层次相互作用。这些创新促进了人类骨盆的进一步生长和灵长类动物中独特的髂骨的形成。
研究人员表示,两足行走是人类的特征。这是由研究小组熟悉的碗状骨盆实现的,骨盆的短而宽的髂叶沿着身体两侧弯曲,以稳定行走和支持内脏器官,以及一个大脑袋、宽肩膀的婴儿。与现存的灵长类动物相比,髂骨的变化是进化上的新现象。然而,这种进化是如何发生的仍然未知。
附:英文原文
Title: The evolution of hominin bipedalism in two steps
Author: Senevirathne, Gayani, Fernandopulle, Serena C., Richard, Daniel, Baumgart, Stephanie L., Christensen, Anika Liv, Fabbri, Matteo, Hppner, Jakob, Jppner, Harald, Li, Peishu, Bothe, Vivien, Frbisch, Nadia, Simcock, Ian, Arthurs, Owen J., Calder, Alistair, Freilich, Naomi, Nowlan, Niamh C., Glass, Ian A., Craft, April, Capellini, Terence D.
Issue&Volume: 2025-08-27
Abstract: Bipedalism is a human-defining trait1,2,3. It is made possible by the familiar, bowl-shaped pelvis, whose short, wide iliac blades curve along the sides of the body to stabilize walking and support internal organs and a large-brained, broad-shouldered baby4,5,6. The ilium changes compared with living primates are an evolutionary novelty7. However, how this evolution came about remains unknown. Here, using a multifaceted histological, comparative genomic and functional genomic approach, we identified the developmental bases of the morphogenetic shifts in the human pelvis that made bipedalism possible. First, we observe that the human ilium cartilage growth plate underwent a heterotopic shift, residing perpendicular to the orientation present in other primate (and mouse) ilia. Second, we observe heterochronic and heterotopic shifts in ossification that are unlike those in non-human primate ilia or human long bones. Ossification initiates posteriorly, resides externally with fibroblast (and perichondral) cells contributing to osteoblasts, and is delayed compared with other bones in humans and with primate ilia. Underlying these two shifts are regulatory changes in an integrated chondrocyte–perichondral–osteoblast pathway, involving complex hierarchical interactions between SOX9–ZNF521–PTH1R and RUNX2–FOXP1/2. These innovations facilitated further growth of the human pelvis and the unique formation of the ilium among primates.
DOI: 10.1038/s41586-025-09399-9
Source: https://www.nature.com/articles/s41586-025-09399-9
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html