近日,北京大学王兴军团队研究了全频谱无线通信的超宽带片上光子学。2025年8月27日,《自然》杂志发表了这一成果。
即将推出的第六代及以后的无线网络将在从微波、毫米波到太赫兹波段的广阔频率范围内运行,以支持各种应用场景中无处不在的连接。这需要一种通用的硬件解决方案,可以在这个宽频谱内自适应地重新配置,以支持全频带覆盖和动态频谱管理。然而,由于设备的带宽有限和系统架构的固有刚性,现有的电气或光子辅助解决方案在满足这一需求方面面临着许多挑战。
研究组演示了跨越100多个前所未有的频率范围的自适应无线通信 GHz,由薄膜铌酸锂(TFLN)光子无线系统驱动。利用TFLN平台的Pockels效应和可扩展性,实现了基本功能元件的单片集成,包括基带调制、宽带无线-光子转换以及可重构载波和本地信号生成。该信号源由宽带可调光电振荡器供电,可在0.5 GHz至115 GHz处具有高频稳定性和一致的相干性。
基于宽带和可重构集成光子解决方案,研究组实现了跨九个连续频带的全链路无线通信,实现了高达100 Gbps的创纪录通道速度。实时可重构性进一步实现了自适应频率分配,这是确保在复杂频谱环境中提高可靠性的关键能力。研究组提出的系统代表了迈向未来全频谱和全场景无线网络的重要一步。
附:英文原文
Title: Ultrabroadband on-chip photonics for full-spectrum wireless communications
Author: Tao, Zihan, Wang, Haoyu, Feng, Hanke, Guo, Yijun, Shen, Bitao, Sun, Dan, Tao, Yuansheng, Han, Changhao, He, Yandong, Bowers, John E., Shu, Haowen, Wang, Cheng, Wang, Xingjun
Issue&Volume: 2025-08-27
Abstract: The forthcoming sixth-generation and beyond wireless networks are poised to operate across an expansive frequency range—from microwave, millimetre wave to terahertz bands—to support ubiquitous connectivity in diverse application scenarios1,2,3. This necessitates a one-size-fits-all hardware solution that can be adaptively reconfigured within this wide spectrum to support full-band coverage and dynamic spectrum management4. However, existing electrical or photonic-assisted solutions face a lot of challenges in meeting this demand because of the limited bandwidths of the devices and the intrinsically rigid nature of system architectures5. Here we demonstrate adaptive wireless communications over an unprecedented frequency range spanning over 100GHz, driven by a thin-film lithium niobate (TFLN) photonic wireless system. Leveraging the Pockels effect and scalability of the TFLN platform, we achieve monolithic integration of essential functional elements, including baseband modulation, broadband wireless–photonic conversion and reconfigurable carrier and local signal generation. Powered by broadband tunable optoelectronic oscillators, our signal sources operate across a record-wide frequency range from 0.5GHz to 115GHz with high-frequency stability and consistent coherence. Based on the broadband and reconfigurable integrated photonic solution, we realize full-link wireless communication across nine consecutive bands, achieving record lane speeds of up to 100Gbps. The real-time reconfigurability further enables adaptive frequency allocation, a crucial ability to ensure enhanced reliability in complex spectrum environments. Our proposed system represents a marked step towards future full-spectrum and omni-scenario wireless networks.
DOI: 10.1038/s41586-025-09451-8
Source: https://www.nature.com/articles/s41586-025-09451-8
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html