近日,中国科学院青岛生物能源与过程研究所刘远帅团队研究了介孔锐钛矿TiO2中Pt-O-Bi键合诱导的强金属负载相互作用对无碱催化生物质增值的影响。相关论文于2025年8月26日发表在《国家科学评论》杂志上。
双金属或三金属催化剂的特殊催化活性已在各种反应中得到证实。深入了解复杂的金属-支撑相互作用仍然至关重要,但具有挑战性。
研究组通过原位一锅蒸发诱导自组装的方法制备了一种具有介孔锐钛矿晶体结构的Pt单原子优势Pt-Bi/TiO2催化剂,并将其用于生物质衍生的5-羟甲基糠醛(HMF)在水介质中无碱氧化成增值化学物质。研究结果表明,Bi的掺入不仅大大增强了Pt与载体之间的强金属-载体相互作用,而且有利于Pt的分布,从而形成单原子Pt-O-Bi键,HAADF-STEM、XPS、CO-DRIFT和XAS分析表明了这一点。
此外,与Pt/TiO2相比,Bi的掺入导致催化剂的表面积和表面氧空位浓度显著增加。Bi掺杂引起的催化剂几何结构和电子结构的变化,有效降低了O2向活性氧的解离能,降低了HMF的吸附能,降低了HMF转化为2,5-二甲酰呋喃(DFF)的激活势垒,最终显著提高了HMF的转化率。这些发现为合理设计高效的生物质增值催化剂提供了有价值的见解。
附:英文原文
Title: Strong metal-support interaction induced by Pt-O-Bi bonding in mesoporous anatase TiO2 for base-free catalytic biomass valorisation
Author: Xu, Haimei, Feng, Chao, Fan, Yunzhao, Geng, Huawei, Yi, Qisong, Li, Xiaoning, Fan, Yameng, Ma, Yibo, Jia, Baohua, Liu, Yuanshuai, Valtchev, Valentin, Ma, Tianyi
Issue&Volume: 2025-08-26
Abstract: The exceptional catalytic activity of bimetallic or trimetallic catalysts has been demonstrated in various reactions. The in-depth understanding of the intricate metal-support interactions remains crucial yet challenging. Herein, a well-defined, highly active, Pt single-atom dominant Pt-Bi/TiO2 catalyst with mesoporous crystalline anatase structure was fabricated via in situ one-pot evaporation-induced self-assembly method and employed for the base-free oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to value-added chemicals in aqueous media. Our findings demonstrate that Bi incorporation not only greatly reinforces the strong metal-support interaction between Pt and the support, but also benefits the Pt distribution, enabling the formation of single-atom Pt-O-Bi bonding, characterized by HAADF-STEM, XPS, CO-DRIFT and XAS analysis. Additionally, Bi incorporation results in remarkable increases in the catalyst's surface area and concentration of surface oxygen vacancies compared to the Pt/TiO2 counterpart. The changes in both geometric and electronic structures of the catalyst induced by Bi incorporation effectively reduce the dissociation energy of O2 into active oxygen species, the adsorption energy of HMF, as well as the activation barrier for its conversion to 2,5-diformylfuran (DFF), ultimately resulting in a significant enhancement in the conversion rate of HMF. These findings provide valuable insights into the rational design of efficient catalysts for biomass valorization.
DOI: 10.1093/nsr/nwaf327
Source: https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwaf327/8241356
National Science Review:《国家科学评论》,创刊于2014年。隶属于牛津学术数据库,最新IF:20.6
官方网址:https://academic.oup.com/nsr/issue?login=false
投稿链接:https://mc.manuscriptcentral.com/nsr_ms