能量紊乱在化学和物理中是普遍存在的。它可以通过破坏分子相干限制极化修饰性质来抑制极化子离域。
通过二维红外光谱和分子动力学模拟,研究组分析了2,6-二叔丁基苯酚在液体(非均质)和固体(均质)中的超快动力学,研究了能量紊乱如何影响振动极化动力学。在液体中,能量紊乱破坏了离域,阻止了振动能量转移。相比之下,随着不均匀性的降低,固体中的振动强耦合恢复了离域并实现了能量传递。
研究组建立了一个严格的离域准则,要求集体耦合强度超过非均匀线宽的三倍,以维持极化子相干性。这一发现强调了能量紊乱的有害影响,并概述了克服离域的策略——要么通过化学控制最小化紊乱,要么通过实现充分的耦合来实现先进的光子结构。
附:英文原文
Title: Overcoming energy disorder for cavity-enabled energy transfer in vibrational polaritons
Author: Guoxin Yin, Tianlin Liu, Lizhu Zhang, Tianyu Sheng, Haochuan Mao, Wei Xiong
Issue&Volume: 2025-08-21
Abstract: Energy disorder is ubiquitous in chemistry and physics. It can suppress polariton delocalization by disrupting molecular coherence–limiting polariton-modified properties. We investigated how energy disorders affect vibrational polariton dynamics by probing ultrafast dynamics in 2,6-di-tert-butylphenol in liquids (inhomogeneous) and solids (homogeneous) using two-dimensional infrared spectroscopy and molecular dynamics simulations. In liquids, energy disorder disrupted delocalization, preventing vibrational energy transfer. By contrast, with reduced inhomogeneity, vibrational strong coupling in solids restored delocalization and enabled energy transfer. We established a stringent delocalization criterion, requiring collective coupling strengths exceeding three times inhomogeneous linewidths to sustain polariton coherence. This finding highlights energy disorder’s detrimental effects and outlines strategies to overcome localization—either by minimizing disorder through chemical control or by achieving sufficient couplings using advanced photonic structures.
DOI: adx3137
Source: https://www.science.org/doi/10.1126/science.adx3137