近日,南京信息工程大学Huixin LI团队研究了AMO如何影响东北亚复合高温干旱事件的年代际变化。该研究于2025年8月19日发表在《中国科学:地球科学》杂志上。
在全球变暖的影响下,复合热干旱事件的强度不断增加,对人类社会构成了重大威胁。然而,东北亚CHDEs的年代际变化及其驱动因素仍未得到充分了解。
研究组采用多元联结方法对该地区7月CHDEs进行特征分析,探讨CHDEs的特征及机制。他们的发现揭示了1940-2022年间CHDEs的强度和频率发生了两次显著的年代际变化,分别发生在20世纪50年代中期和90年代中期。这些变化分别对应于CHDEs的年代际减弱和强化时期。这种年代际变化的主要驱动因素已被确定为大西洋多年代际振荡(AMO)。在AMO正相期间,大西洋异常温暖的海面温度(SSTs)影响沿大圆路线传播的波列,随后改变了NEA的区域大气环流模式。
与此同时,副热带西风急流北移增强。这些条件促进了异常高压和垂直向下运动的发展,导致降水减少和气温升高,从而增加了这一时期NEA CHDE的强度和频率。大西洋驱动机制的模拟实验进一步印证了这些发现,强调了AMO阶段在驱动CHDEs年代际变化中的重要作用。这项研究为未来NEA地区CHDEs的年代际预测提供了重要见解,从而有助于更广泛地了解气候变率及其对社会恢复力的影响。
附:英文原文
Title: How the AMO influences interdecadal variations of compound hot drought events in Northern East Asia
Author: Qiuxiao ZHU, Huixin LI, Bo SUN, Shengping HE, Yuan YUAN, Jiani ZENG, Anqin TAN
Issue&Volume: 2025/08/19
Abstract: Under the influence of global warming, the increasing intensity of compound hot drought events (CHDEs) presents a substantial threat to human society. However, the interdecadal variability and driving factors of CHDEs in Northern East Asia (NEA) remain insufficiently understood. Employing the multivariate copula method to characterize CHDEs, this study investigates the characteristics and mechanisms in this region during July. Our findings reveal two notable interdecadal shifts in the intensity and frequency of CHDEs during 1940–2022, occurring in the mid-1950s and the mid-1990s. These shifts correspond to periods of interdecadal weakening and intensification of CHDEs, respectively. The primary driver of this interdecadal variability has been identified as the Atlantic Multidecadal Oscillation (AMO). During the positive phase of the AMO, anomalously warm sea surface temperatures (SSTs) in the Atlantic Ocean influence wave trains that propagate along great circle routes, subsequently altering regional atmospheric circulation patterns in NEA. Concurrently, the upper–level subtropical westerly jet experiences a northward shift and intensification. These conditions foster the development of anomalously high pressure and downward vertical motion, leading to reduced precipitation and elevated temperatures, which in turn increase the intensity and frequency of CHDEs in NEA during this period. The Atlantic pacemaker simulations further corroborate these findings, highlighting the significant role of the AMO phase in driving interdecadal variations of CHDEs. This research provides essential insights for future interdecadal predictions of CHDEs in NEA, thereby contributing to the broader understanding of climate variability and its implications for societal resilience.
DOI: 10.1007/s11430-025-1642-3
Source: https://www.sciengine.com/SCES/doi/10.1007/s11430-025-1642-3
Science China Earth Sciences:《中国科学:地球科学》,创刊于1952年。隶属于施普林格·自然出版集团,最新IF:5.7
官方网址:https://www.sciengine.com/SCES/home
投稿链接:https://mc03.manuscriptcentral.com/sces