当前位置:科学网首页 > 小柯机器人 >详情
间隙等离子体腔的声波调制
作者:小柯机器人 发布时间:2025/8/1 16:13:18

近日,美国斯坦福大学Mark L. Brongersma团队研究了间隙等离子体腔的声波调制。2025年7月31日出版的《科学》杂志发表了这项成果。

如果能找到高速电控其光学共振的方法,金属纳米结构在纳米光子学中的重要作用将得到进一步拓展。

研究组利用电驱动的表面声波和间隙等离子体产生的极端光集中来实现这一目标。他们将金纳米粒子放置在一个带有几纳米厚的可压缩聚合物间隔层的镜面粒子结构中。然后,表面立体波以接近千兆赫的速度调谐光散射。研究组观察到的证据表明,表面共声波在聚合物中产生了机械变形,随后的非线性机械动力学导致了意想不到的大水平应变和光谱调谐。该方法为电驱动的动态超表面提供了一种设计策略,并对超约束几何中的高频聚合物动力学进行了基础探索。

附:英文原文

Title: Acoustic wave modulation of gap plasmon cavities

Author: Skyler P. Selvin, Majid Esfandyarpour, Anqi Ji, Yan Joe Lee, Colin Yule, Jung-Hwan Song, Mohammad Taghinejad, Mark L. Brongersma

Issue&Volume: 2025-07-31

Abstract: The important role of metallic nanostructures in nanophotonics will expand if ways to electrically manipulate their optical resonances at high speed can be identified. We capitalized on electrically driven surface acoustic waves and the extreme light concentration afforded by gap plasmons to achieve this goal. We placed gold nanoparticles in a particle-on-mirror configuration with a few-nanometer-thick, compressible polymer spacer. Surface acoustic waves were then used to tune light scattering at speeds approaching the gigahertz regime. We observed evidence that the surface acoustic waves produced mechanical deformations in the polymer and that ensuing nonlinear mechanical dynamics led to unexpectedly large levels of strain and spectral tuning. Our approach provides a design strategy for electrically driven dynamic metasurfaces and fundamental explorations of high-frequency, polymer dynamics in ultraconfined geometries.

DOI: adv1728

Source: https://www.science.org/doi/10.1126/science.adv1728

期刊信息
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714