德国卡尔斯鲁厄理工学院Koos, Christian团队近日研究了利用克尔孤子微梳的320 GHz光电子模数转换器(ADC)。2025年7月8日出版的《光:科学与应用》杂志发表了这项成果。
克尔孤子微梳有可能颠覆各种应用,如超高速光通信、超高速距离测量、大规模平行光探测和测距(LiDAR)或高分辨率光谱学。同样,超宽带光电子信号处理也可以受益于芯片级频率梳结构,它提供宽带光发射以及超低相位噪声和定时抖动。然而,虽然基于飞秒激光的光子模数转换器(ADC)已经被证明可以克服电子振荡器的抖动相关限制,但克尔梳在光电子信号处理中的潜力仍有待探索。
研究组展示了一个基于微梳的光电子ADC,它结合了高速电光调制器和克尔梳,用于对产生的光波形进行频谱切片相干检测。该系统的采集带宽创纪录地达到320 GHz,相当于至少640 GSa/s的有效采样率。在概念验证实验中,他们通过采集包含24 GHz至264 GHz中心频率多通道的宽带模拟数据信号,证实了该方案的可行性,其误码率(BER)低于广泛应用的前向纠错(FEC)阈值。这是首次实现基于微梳的模数转换器(ADC),并由此创下迄今为止所有模数转换器中最大的采集带宽记录。
附:英文原文
Title: 320 GHz photonic-electronic analogue-to-digital converter (ADC) exploiting Kerr soliton microcombs
Author: Fang, Dengyang, Drayss, Daniel, Peng, Huanfa, Lihachev, Grigory, Fllner, Christoph, Kuzmin, Artem, Marin-Palomo, Pablo, Matalla, Patrick, Kharel, Prashanta, Wang, Rui Ning, Riemensberger, Johann, Zhang, Mian, Witzens, Jeremy, Scheytt, J. Christoph, Freude, Wolfgang, Randel, Sebastian, Kippenberg, Tobias J., Koos, Christian
Issue&Volume: 2025-07-08
Abstract: Kerr soliton microcombs have the potential to disrupt a variety of applications such as ultra-high-speed optical communications, ultra-fast distance measurements, massively parallel light detection and ranging (LiDAR) or high-resolution optical spectroscopy. Similarly, ultra-broadband photonic-electronic signal processing could also benefit from chip-scale frequency comb sources that offer wideband optical emission along with ultra-low phase noise and timing jitter. However, while photonic analogue-to-digital converters (ADC) based on femtosecond lasers have been shown to overcome the jitter-related limitations of electronic oscillators, the potential of Kerr combs in photonic-electronic signal processing remains to be explored. In this work, we demonstrate a microcomb-based photonic-electronic ADC that combines a high-speed electro-optic modulator with a Kerr comb for spectrally sliced coherent detection of the generated optical waveform. The system offers a record-high acquisition bandwidth of 320GHz, corresponding to an effective sampling rate of at least 640GSa/s. In a proof-of-concept experiment, we demonstrate the viability of the concept by acquiring a broadband analogue data signal comprising different channels with centre frequencies between 24GHz and 264GHz, offering bit error ratios (BER) below widely used forward-error-correction (FEC) thresholds. To the best of our knowledge, this is the first demonstration of a microcomb-based ADC, leading to the largest acquisition bandwidth demonstrated for any ADC so far.
DOI: 10.1038/s41377-025-01778-1
Source: https://www.nature.com/articles/s41377-025-01778-1
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex