当前位置:科学网首页 > 小柯机器人 >详情
非马尔可夫噪声缓解:实际实施、误差分析和环境频谱特性的作用
作者:小柯机器人 发布时间:2025/7/8 15:35:57

近日,美国宾夕法尼亚州立大学Xiantao Li团队研究了非马尔可夫噪声缓解:实际实施、误差分析和环境频谱特性的作用。相关论文于2025年7月7日发表在《物理评论A》杂志上。

量子误差缓解(QEM)是一种不需要额外辅助量子比特的错误抑制策略,为在当前量子设备上实现量子计算算法的量子加速提供了一条有前途的途径。然而,先前的研究主要集中在马尔可夫噪声上,这种噪声只有在系统和环境之间的分离足够大时才会发生。

研究组通过扩展QEM框架中的概率误差消除(PEC)方法,提出了一种非马尔可夫噪声抑制(NMNM)方法来处理非马尔可夫噪声。研究组提出了一个时间局部量子主方程的推导,其中非相干系数直接从bath相关函数(BCFs)中获得,这是非马尔可夫环境的关键特性,将使误差缓解算法感知环境。研究组进一步建立了QEM的总体近似误差和采样开销与环境的频谱特性之间的直接联系。在自旋玻色子模型上进行的数值模拟进一步验证了该方法的有效性。

附:英文原文

Title: Non-Markovian noise mitigation: Practical implementation, error analysis, and the role of spectral properties of the environment

Author: Ke Wang, Xiantao Li

Issue&Volume: 2025/07/07

Abstract: Quantum error mitigation (QEM), an error suppression strategy without the need for additional ancilla qubits for noisy intermediate-scale quantum (NISQ) devices, presents a promising avenue for realizing quantum speedups of quantum computing algorithms on current quantum devices. However, prior investigations have predominantly been focused on Markovian noise, which only occurs when the separation between the system and environment is sufficiently large. In this paper, we propose a non-Markovian noise mitigation (NMNM) method by extending the probabilistic error cancellation (PEC) method in the QEM framework to treat non-Markovian noise. We present the derivation of a time-local quantum master equation where the incoherent coefficients are directly obtained from bath correlation functions (BCFs), key properties of a non-Markovian environment that will make the error mitigation algorithms environment aware. We further establish a direct connection between the overall approximation error and sampling overhead of QEM and the spectral property of the environment. Numerical simulations performed on a spin-boson model further validate the efficacy of our approach.

DOI: 10.1103/db4q-8ny9

Source: https://journals.aps.org/pra/abstract/10.1103/db4q-8ny9

期刊信息

Physical Review A:《物理评论A》,创刊于1970年。隶属于美国物理学会,最新IF:2.97
官方网址:https://journals.aps.org/pra/
投稿链接:https://authors.aps.org/Submissions/login/new