当前位置:科学网首页 > 小柯机器人 >详情
半导体腔量子电动力学实现的纳米光子量子粒子
作者:小柯机器人 发布时间:2025/7/10 17:18:51

中山大学刘进团队近日报道了半导体腔量子电动力学实现的纳米光子量子粒子。这一研究成果发表在2025年7月9日出版的《自然—物理学》杂志上。

Skyrmions是拓扑稳定的准粒子,在粒子物理、量子场论、光学和凝聚态物理等领域都有研究。具有局部拓扑结构的量子光学skyrmions有望重塑量子光子技术的格局,尽管其实验实现尚未得到证实。

研究组报道了以半导体腔量子电动力学系统为主题的纳米光子量子粒子的实验实现。通过控制高斯微腔中的光子自旋轨道耦合,他们获得了一种偏振具有skyrmions量子拓扑的受限光学模式。利用明显的腔量子电动力学效应,研究组从固体量子发射器中产生并检测到单光子天空粒子,确定耦合到高斯微腔。

通过塞曼效应,可以通过翻转量子发射器的偏振来交换与单光子skyrmions粒子相关的极性。研究组还分析了不同扰动下量子光学粒子的拓扑保护。该工作为纳米尺度的量子光物质相互作用开辟了一个未被探索的方面,并可能推进具有高维量子比特和高容量量子存储器的弹性光子量子技术。

附:英文原文

Title: Nanophotonic quantum skyrmions enabled by semiconductor cavity quantum electrodynamics

Author: Ma, Jiantao, Yang, Jiawei, Liu, Shunfa, Chen, Bo, Li, Xueshi, Song, Changkun, Qiu, Guixin, Zou, Kai, Hu, Xiaolong, Li, Feng, Yu, Ying, Liu, Jin

Issue&Volume: 2025-07-09

Abstract: Skyrmions are topologically stable quasiparticles that have been investigated in contexts including particle physics, quantum field theory, acoustics and condensed-matter physics. Quantum optical skyrmions with local topological textures are expected to reshape the landscape of quantum photonic technology, although their experimental implementation has not yet been demonstrated. Here we present experimental realizations of nanophotonic quantum skyrmions using a semiconductor cavity quantum electrodynamics system. By manipulating the photonic spin–orbit coupling in a Gaussian microcavity, we obtained a confined optical mode whose polarizations feature skyrmionic topologies. With pronounced cavity quantum electrodynamics effects, we generated and detected single-photon skyrmions from a solid-state quantum emitter deterministically coupled to the Gaussian microcavity. The polarity associated with single-photon skyrmions can be swapped by flipping the polarization of the quantum emitter through the Zeeman effect. We also investigated the topological protection of quantum optical skyrmions under different perturbations. Our work opens an unexplored aspect of quantum light–matter interactions in the nanoscale and might advance resilient photonic quantum technology with high-dimensional qubits and high-capacity quantum memories.

DOI: 10.1038/s41567-025-02973-y

Source: https://www.nature.com/articles/s41567-025-02973-y

期刊信息
Nature Physics:《自然—物理学》,创刊于2005年。隶属于施普林格·自然出版集团,最新IF:19.684