当前位置:科学网首页 > 小柯机器人 >详情
可回收的铁电分子获取机械能用于持续制氢
作者:小柯机器人 发布时间:2025/4/8 19:41:39

中山大学邹贵付小组宣布他们研究出可回收的铁电分子获取机械能用于持续制氢。2025年4月7日出版的《美国化学会杂志》发表了这项成果。

本文报道了一种利用铁电分子(TMFM)0.26(TMCM)0.74CdCl3 (MF-1)生成氢的可循环过饱和策略,该策略使铁电分子纳米晶体在过饱和水溶液体系中实现了再结晶和溶解的循环。铁电分子纳米晶体通过压电效应产生氢,并溶解于水溶液中,实现氢的完全脱附。此外,它们的低声学阻抗与水的阻抗非常接近,有利于高效的机械能传输,从而提高了制氢效率。课题组实现了创历史新高的机械制氢速率11.56 mmol g-1 h -1(机械-氢能量转换效率为35.6%),并且耐久性超过1500 h。这项工作不仅为高效和可持续的制氢提供了新的策略,而且为水溶性铁电分子材料的应用前景提供了前景。

据介绍,从水和可再生能源中生产氢燃料是实现碳中和和可持续发展的最有希望的途径之一。然而,现有的制氢技术存在耐久性问题,如中毒、结焦和结垢,因此寻找长期制氢催化剂或方法是一个至关重要的经济问题。

附:英文原文

Title: Recyclable Molecular Ferroelectrics to Harvest Mechanical Energy for Sustained Hydrogen Generation

Author: Lutao Li, Chen Wang, Chao-Ran Huang, Wei-Qiang Liao, Xiaoli Xu, Lingbo Xiao, Ruonan Wang, Weiyu Cheng, Tiwei He, Shan Cong, Zhenhui Kang, Ren-Gen Xiong, Guifu Zou

Issue&Volume: April 7, 2025

Abstract: Production of hydrogen fuel from water and renewable energy offers one of the most promising pathways for carbon neutrality and sustainable development. However, existing hydrogen generation technologies struggle with durability issues, such as poisoning, coking, and fouling, so it is a crucial economic concern to find a long-term hydrogen generation catalyst or approach. Herein, we report a recyclable cyclic supersaturation strategy harnessing molecular ferroelectric (TMFM)0.26(TMCM)0.74CdCl3 (MF-1) for hydrogen generation, which enables cycles of recrystallization and dissolution of molecular ferroelectric nanocrystals in supersaturated aqueous solution systems. The molecular ferroelectric nanocrystals generate hydrogen through the piezoelectric effect and dissolve in aqueous solution, enabling complete hydrogen desorption. Additionally, their low acoustic impedance, closely matching that of water, facilitates efficient mechanical energy transmission, thereby enhancing hydrogen generation efficiency. We achieve a robust hydrogen generation rate of record-high 11.56 mmol g–1 h–1 (mechanical-to-hydrogen energy conversion efficiency of 35.6%), with outstanding durability surpassing 1500 h. This work not only provides a new strategy for efficient and sustainable hydrogen generation but also boosts the outlook for the application of water-soluble molecular ferroelectric materials.

DOI: 10.1021/jacs.4c18462

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c18462

 

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000