中国科学院化学研究所李玉良团队研究了界面原子重排驱动电位自适应电催化烯烃加氢。相关论文于2025年4月29日发表在《德国应用化学》杂志上。
通过化学键转换,金属原子在异质界面上的动态重排驱动了高效的电催化过程。探索直接控制界面结构和原子组成功能的转化催化体系具有重要意义。石墨二炔(GDY)作为一种新兴的二维碳同素异形体,为异质界面工程提供了前所未有的优势。特别是,石墨二炔的表面电荷分布不均、活性位点分布高和可定制的电子结构为开发新一代催化系统带来了前所未有的机遇。
研究组报告了一种直接控制GDY/NiPd/GDY界面上的协同生长和驱动金属原子重排的新思路。实验结果揭示了两种独特的界面现象:(i)GDY在NiPd纳米合金中诱导了大量位错的形成;(ii)表面金属原子从(111)晶面重排到(200)晶面。详细的光谱分析进一步证明了元素价态和化学计量比的组成依赖性演变。这种原子级的重组建立了一个以非整数电荷转移为特征的电荷再分配网络,提高了整体电导率和本征活性。更令人鼓舞的是,这种电催化烯烃氢化是在水溶液中进行的。GDY/NiPd/GDY异质结构具有优异的活性(周转频率:6.8 s-1)、稳定性(>5个循环)和化学选择性(~100%),优于传统催化剂。
附:英文原文
Title: Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation
Author: Siao Chen, Yurui Xue, Yang Gao, Han Wu, Siyi Chen, Yunhao Zheng, Yuliang Li
Issue&Volume: 2025-04-29
Abstract: Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution, high distribution of active sites and customizable electronic structures of GDY provide unprecedented opportunities for developing new-generation catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. Experimental results revealed two unique interfacial phenomena: (i) GDY-induced massive dislocation formation within NiPd nanoalloys and (ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s-1), stability (>5 cycles), and chemo-selectivity (~100%), which is superior to traditional catalysts.
DOI: 10.1002/anie.202507269
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202507269
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx