近日,德国波茨坦大学Nicolas A. Da Silva团队研究了极端降水的超克劳修斯-克拉珀龙尺度由层状雨型转变为对流雨型。这一研究成果发表在2025年4月28日出版的《自然—地球科学》杂志上。
短期极端降水对人类生命和基础设施构成风险,并可能受到气候变化的强烈影响。在过去的二十年里,几项研究报告称,极端降雨强度会随着温度的升高而增加,其速度超过热力学克劳修斯-克拉珀龙速率。对此提出了两种解释:(1)雷暴引起的对流降水可能会因温度而强烈增强;(2)从低强度层状降雨到高强度对流降雨的统计转变可能会放大温度的标度率。研究组使用欧洲的高时空分辨率闪电记录,在风暴尺度上检验这两个假设,即在5 km空间和10 分钟时间。
研究组表明,降雨类型的统计变化单独解释了观测到的超克劳修斯-克拉珀龙尺度率,当单独考虑时,层状和对流降水极端都以克劳修斯-克拉珀龙速率增加,从而驳斥了假设(1)。在极端降水中起主导作用的中尺度对流系统确实具有超级克拉珀龙结垢率,因为当露点温度高于14°C时,它们的对流分数显著增加。强度-持续时间-频率曲线分析表明,露点温度越高,极端亚低温风暴的强度越强。
附:英文原文
Title: Super-Clausius–Clapeyron scaling of extreme precipitation explained by shift from stratiform to convective rain type
Author: Da Silva, Nicolas A., Haerter, Jan O.
Issue&Volume: 2025-04-28
Abstract: Short-duration precipitation extremes pose a risk to human lives and infrastructure and may be strongly affected by climate change. In the past two decades, several studies reported that extreme rainfall intensity can increase with temperature at rates exceeding the thermodynamic Clausius–Clapeyron rate. Two explanations have been proposed for this: (1) convective precipitation—arising from thunderstorms—might be strongly invigorated with temperature; (2) a statistical shift from low-intensity stratiform rainfall to higher-intensity convective rainfall might amplify the scaling rate with temperature. Here we use high spatio-temporal-resolution lightning records in Europe to test these two hypotheses at the storm scale, that is, within 5km spatially and 10min temporally. We show that the statistical shift in rain type alone accounts for the observed super-Clausius–Clapeyron scaling rate, and when considered in isolation, both stratiform and convective precipitation extremes increase at the Clausius–Clapeyron rate—thus refuting hypothesis (1). Mesoscale convective systems, which play a dominant role in generating precipitation extremes, do feature a super-Clausius–Clapeyron scaling rate because of a substantial increase in their convective fraction with dew point temperature above 14°C. Analyses of intensity–duration–frequency curves show that extreme sub-hourly storms are the most strongly intensified with higher dew point temperatures.
DOI: 10.1038/s41561-025-01686-4
Source: https://www.nature.com/articles/s41561-025-01686-4