华东理工大学沈中杰团队研究了CaO/Ca(OH)2颗粒流化热化学储能传热特性。相关论文发表在2025年4月15日出版的《颗粒学报》杂志上。
基于CaO/Ca(OH)2可逆水合/脱水的热化学储能(TCES)正在成为利用可持续和可再生能源的有前景的方法。研究组利用流化床反应器研究了微米级CaO/Ca(OH)2颗粒在稀相条件下的流动和传热特性。他们进行了详细的实验,以测量一系列操作参数下的颗粒浓度、温度分布和传热系数。
结果表明,从加热壁到流化颗粒的传热系数随着反应温度和蒸汽分压的增加而显著增加。此外,采用簇更新模型预测传热行为,与实验数据相比,实现了较低的平均相对误差。这些发现加深了对基于流化床的CaO/Ca(OH)2 TCES工艺的基本理解,并为优化大规模高温储能系统以支持间歇性可再生能源应用提供了实用指南。
附:英文原文
Title: Heat transfer characteristics of CaO/Ca(OH)2 particle fluidization for thermochemical energy storage
Author: Zhongjie Shen a b
Issue&Volume: 2025/04/15
Abstract: Thermochemical energy storage (TCES) based on the reversible hydration/dehydration of CaO/Ca(OH)2 is emerging as a promising method for harnessing sustainable and renewable energy sources. In this study, a fluidized bed reactor was utilized to investigate the flow and heat transfer characteristics of micron-sized CaO/Ca(OH)2 particles under dilute-phase conditions. Detailed experiments were carried out to measure particle concentration, temperature distribution, and heat transfer coefficients across a range of operating parameters. The results demonstrated that the heat transfer coefficient from the heated wall to the fluidized particles increases significantly with both reaction temperature and vapor partial pressure. Furthermore, the cluster renewal model was employed to predict the heat transfer behavior, achieving a low average relative error compared to the experimental data. These findings enhance the fundamental understanding of fluidized-bed-based CaO/Ca(OH)2 TCES processes and offer practical guidelines for optimizing large-scale, high-temperature energy storage systems in support of intermittent renewable energy applications.
DOI: 10.1016/j.partic.2025.04.005
Source: https://www.sciencedirect.com/science/article/abs/pii/S1674200125000987
Particuology:《颗粒学报》,创刊于2003年。隶属于爱思唯尔出版集团,最新IF:3.5
官方网址:https://www.sciencedirect.com/journal/particuology
投稿链接:https://www2.cloud.editorialmanager.com/partic/default2.aspx