当前位置:科学网首页 > 小柯机器人 >详情
水与具有极性键的二维材料之间的高效电荷转移
作者:小柯机器人 发布时间:2025/4/15 14:27:48

近日,南京航空航天大学郭万林团队研究了水与具有极性键的二维材料之间的高效电荷转移。2025年4月14日出版的《美国化学会杂志》发表了这项成果。

固液界面上的电荷转移在生化过程、催化和电化学装置中至关重要。然而,理解纳米级固液界面上的电荷转移机制仍然极具挑战性。研究组进行从头计算分子动力学模拟,以研究水和两种最常见的二维材料之间的界面电荷转移:具有非极性C-C键的石墨烯和具有极性B-N键的六方氮化硼(hBN)。尽管石墨烯是半导体的,hBN是绝缘的,但发现水和hBN之间的电荷转移比水和石墨烯之间的电荷传递高约1个数量级是违反直觉的。研究组进一步的分析将这种现象归因于与石墨烯表面相比,水分子更倾向于将氢原子指向hBN表面,尽管它们具有相似的晶体结构。

hBN表面上的这种单一氢下水构型促使电子从hBN离域,并促进电子迁移到水中。此外,hBN中的极性B-N键导致水的氮原子和氢原子之间存在强烈的轨道重叠。在水和二维氮化镓(GaN)和氮化铝(AlN)之间也观察到类似的电荷转移增强,它们也具有极性键,并且证明了电荷转移与键极性之间的正相关关系。进一步的模拟表明,水在石墨烯和hBN表面上的摩擦系数与电荷转移量呈正相关。这些发现表明,像hBN这样具有极性键的材料可以作为生化传感器和能量转换装置的有前景的材料。

附:英文原文

Title: Highly Efficient Charge Transfer between Water and Two-Dimensional Materials with Polar Bonds

Author: Yuwei Cao, Chenchen Zhou, Wanqi Zhou, Chun Shen, Bao Jin, Tianbao Ma, Hu Qiu, Wanlin Guo

Issue&Volume: April 14, 2025

Abstract: Charge transfer at solid–liquid interfaces is pivotal in biochemical processes, catalysis, and electrochemical devices. However, understanding the charge transfer mechanism at the nanoscale solid–liquid interface remains highly challenging. Here, we conduct ab initio molecular dynamics simulations to investigate interfacial charge transfer between water and the two most common two-dimensional materials: graphene with nonpolar C–C bonds and hexagonal boron nitride (hBN) with polar B–N bonds. It is counterintuitive to find that the charge transfer between water and hBN is approximately 1 order of magnitude higher than that between water and graphene despite the fact that graphene is semiconducting and hBN is insulating. Our further analyses attribute this phenomenon to a higher tendency of water molecules to point a hydrogen atom toward the hBN surface compared to the graphene surface, although they have similar crystallographic structures. This single hydrogen-down water configuration on the hBN surface prompts electron delocalization from hBN and facilitates electron migration to water. Moreover, the polar B–N bonds in hBN result in a strong orbital overlap between nitrogen atoms and hydrogen atoms of water. A similar charge transfer enhancement is also observed between water and two-dimensional gallium nitride (GaN) and aluminum nitride (AlN), which also own polar bonds, and a positive correlation between the charge transfer and the bond polarity is demonstrated. Further simulations indicate that the friction coefficient of water on graphene and hBN surfaces positively correlates with the amount of charge transfer. These findings suggest that materials with polar bonds like hBN can serve as promising materials for biochemical sensors and energy conversion devices.

DOI: 10.1021/jacs.5c00480

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c00480

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000