复旦大学晁栋梁研究小组近日取得一项新成果。他们的论文揭示了碱离子硫水溶液电池的故障:通过配位调节解决水迁移问题。2025年3月3日出版的《德国应用化学》杂志发表了这项成果。
研究小组首次通过非原位核磁共振发现了解耦电解质之间碱离子驱动的水迁移现象,这被认为是不可逆硫氧化还原反应的起源。为了解决这一挑战,该课题组提出了一种碱离子-水差配位策略,通过加入低分子极性指数(MPI)阴离子来有效调节水的迁移。原位拉曼光谱、同步加速器光谱和分子动力学模拟表明,低MPI阴离子对水的排斥有效地破坏了碱阳离子周围的水化模式,从而最大限度地减少了伴随的水迁移。制备的Na+-SAB实现了1634 mAh g-1的超高容量(97.7%的硫利用率)和500次循环以上的长稳定性。
此外,在Li+-SAB和K+-SAB电池中进一步证实了碱离子- h2o差配位策略的通用性,从而扩大了后续SAB系统的应用范围。
据介绍,硫水电池(SAB)具有较高的理论容量和成本竞争力,具有广阔的应用前景。虽然解耦电解质设计成功地赋予了过渡金属离子-SABs以高能量密度的可化性,但其在碱离子-SABs中的有效性仍然存在问题。
附:英文原文
Title: Unveil the Failure of Alkali Ion-Sulfur Aqueous Batteries: Resolving Water Migration by Coordination Regulation
Author: Xiaoyu Yu, Yutong Feng, Jiazhuang Tian, Xin Liu, Boya Wang, Yanyan Zhang, Tengsheng Zhang, Gaoyang Li, Xinran Li, Hongrun Jin, Wanhai Zhou, Wei Li, Zhiyuan Zeng, Laiquan Li, Dongyuan Zhao, Dongliang Chao
Issue&Volume: 2025-03-03
Abstract: Sulfur aqueous battery (SAB) is promising owing to its high theoretical capacity and cost competitiveness. Although decoupled electrolyte design has successfully endowed transition metal ion-SABs with customizability to achieve high energy density, its effectiveness in alkali ion-SABs remains problematic. Here, we identify for the first time an intractable phenomenon of alkali-ion-driven water migration between decoupled electrolytes through ex-situ NMR, which is recognized as the origin of the irreversible sulfur redox reactions. To address the challenge, we propose an alkali-ion-H2O-poor coordination strategy to effectively regulate water migration by incorporating low molecular polarity index (MPI) anions. In-situ Raman, synchrotron spectroscopy, and molecule dynamic simulations reveal that the repulsion of low MPI anions to water effectively disrupts the hydration patterns around the alkali cations, and thereby minimizes the concomitant water migration. The elaborated Na+-SAB achieved an ultrahigh capacity of 1634 mAh g1 (97.7% sulfur utilization) and prolonged stability over 500 cycles. Furthermore, the versatility of alkali-ion-H2O-poor coordination strategy is further substantiated in Li+-SAB and K+-SAB batteries, boosting the scope of following SAB systems.
DOI: 10.1002/anie.202503138
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202503138
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx