当前位置:科学网首页 > 小柯机器人 >详情
里德伯原子链的几何相位和多体纠缠
作者:小柯机器人 发布时间:2025/3/28 16:50:15

清华大学Chang-Yan Wang团队研究了里德伯原子链的几何相位和多体纠缠。2025年3月27日出版的《物理评论A》杂志发表了这项成果。

课题组研究了里德伯原子链中量子相变的几何相位(GP)和几何纠缠(GE)的行为,这是一种多体纠缠度量。利用密度矩阵重整化群计算和有限尺寸标度分析,他们表征了无序相和有序相之间转变的临界性质。这两个量在转变点附近都表现出特征标度,无序到Z2有序相变表现出与伊辛普适性类一致的行为,而无序到Z3相变表现出明显的临界性质。

研究组证明GP和GE可以作为量子临界性的敏感探针,提供一致的临界参数和标度行为。从量子几何的角度探索了这些几何量的统一描述,并讨论了用于其潜在测量的干涉装置。该研究结果提供了对里德伯原子系统中量子相变附近几何相位和多体纠缠之间相互作用的见解,揭示了这些量如何反映这些复杂量子多体系统中潜在的临界行为。

附:英文原文

Title: Geometric phase and multipartite entanglement of Rydberg atom chains

Author: Chang-Yan Wang

Issue&Volume: 2025/03/27

Abstract: We investigate the behavior of geometric phase (GP) and geometric entanglement (GE), a multipartite entanglement measure, across quantum phase transitions in Rydberg atom chains. Using density-matrix renormalization-group calculations and finite-size scaling analysis, we characterize the critical properties of transitions between disordered and ordered phases. Both quantities exhibit characteristic scaling near transition points, with the disorder to the Z2 ordered phase transition showing behavior consistent with the Ising universality class, while the disorder to the Z3 phase transition displays distinct critical properties. We demonstrate that GP and GE serve as sensitive probes of quantum criticality, providing consistent critical parameters and scaling behavior. A unifying description of these geometric quantities from a quantum geometry perspective is explored, and an interferometric setup for their potential measurement is discussed. Our results provide insights into the interplay between geometric phase and multipartite entanglement near quantum phase transitions in Rydberg-atom systems, revealing how these quantities reflect the underlying critical behavior in these complex quantum many-body systems.

DOI: 10.1103/PhysRevA.111.033321

Source: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.111.033321

期刊信息

Physical Review A:《物理评论A》,创刊于1970年。隶属于美国物理学会,最新IF:2.97
官方网址:https://journals.aps.org/pra/
投稿链接:https://authors.aps.org/Submissions/login/new