美国麻省理工学院Nikta Fakhri团队发现光诱导的皮质兴奋性揭示了海星卵母细胞的可编程形状动力学。相关论文于2025年3月24日发表在《自然—物理学》杂志上。
化学机械波在动态改变形状的细胞中的力产生和远程信号传输中起着关键作用,例如在细胞分裂或形态发生过程中。重建和控制这种化学控制的细胞变形是合成细胞发展的一个关键但尚未解决的挑战。
研究组提出了一种光遗传学方法来研究在减数分裂细胞分裂过程中协调海星红斑海盘车卵母细胞中发生的表面收缩波的机制。使用光遗传学刺激,他们创建了与减数分裂线索解耦的化学机械皮层兴奋,并驱动了各种形状变形,从局部夹紧到表面收缩波和细胞破裂。一个涉及化学和几何动力学的定量模型使人们能够预测和解释对光遗传学刺激的各种机械反应。
最后,研究组定性地绘制了观察到的形状动力学,以了解细胞内蛋白质动力学的多样性如何产生广泛的机械表型。更广泛地说,该研究结果为实时控制生物体的动态变形提供了一条途径,并可以推进合成细胞和类生命细胞功能的设计。
附:英文原文
Title: Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes
Author: Liu, Jinghui, Burkart, Tom, Ziepke, Alexander, Reinhard, John, Chao, Yu-Chen, Tan, Tzer Han, Swartz, S. Zachary, Frey, Erwin, Fakhri, Nikta
Issue&Volume: 2025-03-24
Abstract: Chemo-mechanical waves play a key role in force generation and long-range signal transmission in cells that dynamically change shape, for example, during cell division or morphogenesis. Reconstituting and controlling such chemically controlled cell deformations is a crucial but unsolved challenge for the development of synthetic cells. Here we present an optogenetic method to investigate the mechanism responsible for coordinating surface contraction waves that occur in oocytes of the starfish Patiria miniata during meiotic cell division. Using optogenetic stimuli, we create chemo-mechanical cortical excitations that are decoupled from meiotic cues and drive various shape deformations, ranging from local pinching to surface contraction waves and breakdown of the cell. A quantitative model entailing both chemical and geometry dynamics allows us to predict and explain the variety of mechanical responses to optogenetic stimuli. Finally, we qualitatively map the observed shape dynamics to understand how the versatility of intracellular protein dynamics can give rise to a broad range of mechanical phenotypes. More broadly, our results suggest a route towards real-time control over dynamical deformations in living organisms and can advance the design of synthetic cells and life-like cellular functions.
DOI: 10.1038/s41567-025-02807-x
Source: https://www.nature.com/articles/s41567-025-02807-x