荷兰阿姆斯特丹大学Corentin Coulais团队研究了活性固体的自适应运动。相关论文于2025年3月12日发表在《自然》杂志上。
由产生能量的微观成分组成的主动系统是一个有前景的平台,可以创建自主功能材料,例如,可以在复杂和不可预测的环境中移动。然而,事实证明,将这些能源转化为有用的机械功颇具挑战性。
研究组基于执行自适应运动的厘米级构建块来设计活性固体。这些原型展示了一种以奇模量为特征的非变分弹性形式,他们使用粗粒理论从微观主题预测了奇模量的大小,并通过实验进行了验证。当与外部环境相互作用时,这些活性固体会自发地经历形状变化的极限循环,这自然会导致滚动和爬行等运动。运动的鲁棒性源于主动固体和环境之间的紧急反馈回路,该回路由弹性变形和应力介导。
因此,该活性固体能够在各种地形中加速、调整步态和运动,其性能与神经网络实现的更复杂的控制策略相似。该工作建立了活性固体作为材料和机器人之间的桥梁,并提出了分散策略来控制生物系统、软材料和驱动纳米机械设备的非线性动力学。
附:英文原文
Title: Adaptive locomotion of active solids
Author: Veenstra, Jonas, Scheibner, Colin, Brandenbourger, Martin, Binysh, Jack, Souslov, Anton, Vitelli, Vincenzo, Coulais, Corentin
Issue&Volume: 2025-03-12
Abstract: Active systems composed of energy-generating microscopic constituents are a promising platform to create autonomous functional materials1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 that can, for example, locomote through complex and unpredictable environments. Yet coaxing these energy sources into useful mechanical work has proved challenging. Here we engineer active solids based on centimetre-scale building blocks that perform adaptive locomotion. These prototypes exhibit a non-variational form of elasticity characterized by odd moduli8,12,17, whose magnitude we predict from microscopics using coarse-grained theories and which we validate experimentally. When interacting with an external environment, these active solids spontaneously undergo limit cycles of shape changes, which naturally lead to locomotion such as rolling and crawling. The robustness of the locomotion is rooted in an emergent feedback loop between the active solid and the environment, which is mediated by elastic deformations and stresses. As a result, our active solids are able to accelerate, adjust their gaits and locomote through a variety of terrains with a similar performance to more complex control strategies implemented by neural networks. Our work establishes active solids as a bridge between materials and robots and suggests decentralized strategies to control the nonlinear dynamics of biological systems8,18,19,20,21,22, soft materials5,6,9,11,12,23,24,25 and driven nanomechanical devices7,26,27,28,29,30.
DOI: 10.1038/s41586-025-08646-3
Source: https://www.nature.com/articles/s41586-025-08646-3
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html