中国科学院上海技术物理研究所黄志明小组报道了室温极值超灵敏光电探测。相关论文发表在2025年2月26日出版的《光:科学与应用》杂志上。
研究人员表示,由于其简单、多功能性和不可或缺性,室温光探测在传感、成像、电信和环境遥感等多种应用中具有举足轻重的意义。虽然已经实现了不同类型的光子探测器和热探测器,但具有室温极值的高灵敏度光探测迄今尚未见报道。
研究小组发现在可见光到太赫兹范围的室温优化光探测中,硒化钽镍(Ta2NiSe5)的异常激子绝缘体相变引起了明显的光电响应峰。光导探测器具有极高的灵敏度,比探测率(D*)为5.3 × 1011 cm·Hz1/2·W1、电带宽360在太赫兹范围内达到千赫,与最先进的室温太赫兹探测器相比,这是一到两个数量级的改进。
研究进一步构建了Ta2NiSe5/WS2的范德华异质结构,以抑制室温下的暗电流,环境D*大为改善,为4.1 × 1012 × cm·Hz1/2·W在可见光波长范围内,与典型的光电探测器相媲美,并且在太赫兹范围内与光电导体器件相比具有优越的光电性能。
他们的研究结果为光电子学开辟了一条新的途径,通过在宽波长波段的激子绝缘体相变,为室温下敏感环境和遥感的应用铺平了道路。
附:英文原文
Title: Ultrasensitive photoelectric detection with room temperature extremum
Author: Wu, Tuntan, Li, Yongzhen, Zhou, Qiangguo, Qiu, Qinxi, Gao, Yanqing, Zhou, Wei, Yao, Niangjuan, Chu, Junhao, Huang, Zhiming
Issue&Volume: 2025-02-26
Abstract: Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta2NiSe5) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3×1011cm·Hz1/2·W1 and electrical bandwidth of 360kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta2NiSe5/WS2 is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1×1012cm·Hz1/2·W1 in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.
DOI: 10.1038/s41377-024-01701-0
Source: https://www.nature.com/articles/s41377-024-01701-0
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex