德国马克斯·普朗克微结构物理研究所Stuart S. P. Parkin研究小组发现了三维扭曲磁带中几何手性和自旋手性的相互作用。相关论文于2025年2月26日发表在《自然》杂志上。
手性是自然界中普遍存在的基本不对称性。近年来,手性物体与自旋流的相互作用引起了科学技术界的极大关注。特别感兴趣的是手性拓扑激发的电流驱动运动,例如手性三维磁结构中的手性磁畴壁,这可以实现高密度存储设备。
研究组使用最先进的多光子光刻技术来创建三维手性磁性带,并执行手性畴壁的电流诱导运动。这些磁性带被设计成具有可变幅度的顺时针或逆时针手性扭曲。研究组发现畴壁可以穿过带状物或受到阻碍,这取决于它们的手性和构型以及带状物的几何手性扭曲。磁交换能和几何扭曲之间的相互作用产生了一个扭转场,该扭转场有利于手性布洛赫型壁,而不是磁性带本身固有磁性所青睐的奈尔型磁壁。
此外,自旋手性和手性扭曲的相互作用导致了非互易畴壁运动,即畴壁滤波器或二极管。该研究结果表明,几何手性和自旋手性之间的相互作用可以产生新的功能,从而实现创新的手性自旋电子学。
附:英文原文
Title: Interplay of geometrical and spin chiralities in 3D twisted magnetic ribbons
Author: Farinha, Andr M. A., Yang, See-Hun, Yoon, Jiho, Pal, Banabir, Parkin, Stuart S. P.
Issue&Volume: 2025-02-26
Abstract: Chirality is a ubiquitous and fundamental asymmetry in nature1,2. Recently, the interaction of chiral objects with spin currents has attracted enormous attention from both scientific and technological perspectives3,4,5. Of particular interest is the current-driven motion of chiral topological excitations such as chiral magnetic domain walls in chiral three-dimensional magnetic structures that could allow for high-density memory-storage devices. Here we use state-of-the-art multiphoton lithography6,7 to create three-dimensional chiral magnetic ribbons and perform current-induced motion of chiral domain walls. The ribbons are designed to have a clockwise or anticlockwise chiral twist with a variable magnitude. We find that domain walls can either pass through the ribbon or are impeded, depending on their chirality and configuration and the geometrical chiral twist of the ribbon. The interplay between the magnetic exchange energy and the geometrical twist generates a torsional field that favours chiral Bloch-type walls rather than the Néel-type wall favoured by the intrinsic magnetic properties of the magnetic ribbon itself. Furthermore, the interplay of spin chirality and chiral twist results in a non-reciprocal domain wall motion, namely, a domain wall filter or diode8,9,10. Our findings show how the interplay between geometrical and spin chiralities can lead to new functionalities that could allow for innovative chiral spintronics.
DOI: 10.1038/s41586-024-08582-8
Source: https://www.nature.com/articles/s41586-024-08582-8
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html