当前位置:科学网首页 > 小柯机器人 >详情
中国大气二氧化碳浓度时空变化及影响因素
作者:小柯机器人 发布时间:2025/1/16 14:30:24

近日,山西大学张红团队的最新研究揭示了中国大气CO2浓度的时空变化及其影响因素。这一研究成果发表在2025年1月14日出版的国际学术期刊《中国地理科学》上。

本研究以温室气体观测卫星(GOSAT)数据为研究对象,探讨2009-2020年中国CO2浓度的变化特征。基于像素的相关性和基于协方差的结构方程模型(CB-SEM)分析,研究人员将气象参数、植被覆盖和人为活动结合起来,以解释CO2浓度的增加。结果表明,CO2垂直输送的影响随海拔高度的增加而减弱,在17个垂直水平上CO2浓度年际增加明显。从空间上看,东部最高,西北最低。CO2浓度在春季(4月)和夏季(8月)分别达到最大值和最小值。

基于像素的相关分析显示,近地表CO2浓度与种群呈正相关(r=0.99, P<0.001),叶面积指数(LAI, r= 0.95, P<0.001),排放量(r=0.91, P <0.001),温度(r =0.60, P<0.05),降水量(r=0.34, P >0.05),土壤水分(r=0.29, P>0.05),夜光(r=0.28, P <0.05);与风速呈负相关(r=0.58, P<0.05)。CB-SEM分析显示,LAI是影响CO2浓度变化的最重要控制因子(总效应为0.66),其次是排放(0.58)、温度(0.45)、降水(0.30)、风速(-0.28)和土壤水分(-0.07)。研究结果强调,该模型解释了CO2增加的93%浓度,同时提供了关于CO2浓度模式及其驱动机制的重要信息,这在气候变化的背景下尤为重要。

据悉,二氧化碳(CO2)水平的快速增长可能引起不可预测的气候变化。CO2浓度的时空变化特征及其影响因素的评估有助于理解碳汇平衡,为气候政策的制定提供依据。

附:英文原文

Title: Spatiotemporal Variation and Influencing Factors of Atmospheric CO2 Concentration in China

Author: Zhu, Weixin, Zhang, Hong, Zhang, Xiaoyu, Guo, Haohao, Liu, Yong

Issue&Volume: 2025-01-14

Abstract: Rapid increases in Carbon dioxide (CO2) levels could trigger unpredictable climate change. The assessment of spatiotemporal variation and influencing factors of CO2 concentration are helpful in understanding the source/sink balance and supporting the formulation of climate policy. In this study, Greenhouse Gases Observing Satellite (GOSAT) data were used to explore the variability of CO2 concentrations in China from 2009 to 2020. Meteorological parameters, vegetation cover, and anthropogenic activities were combined to explain the increase in CO2 concentration, using pixel-based correlations and Covariance Based Structural Equation Modeling (CB-SEM) analysis. The results showed that the influence of vertical CO2 transport diminished with altitude, with a distinct inter-annual increase in CO2 concentrations at 17 vertical levels. Spatially, the highest values were observed in East China, whereas the lowest were observed in Northwest China. There were significant seasonal variations in CO2 concentration, with maximum and minimum values in spring (April) and summer (August), respectively. According to the pixel-based correlation analysis, the near-surface CO2 concentration was positively correlated with population (r = 0.99, P < 0.001), Leaf Area Index (LAI, r = 0.95, P < 0.001), emissions (r = 0.91, P < 0.001), temperature (r = 0.60, P < 0.05), precipitation (r = 0.34, P > 0.05), soil water (r = 0.29, P > 0.05), nightlight (r = 0.28, P < 0.05); and negatively correlated with wind speed (r = 0.58, P < 0.05). CB-SEM analysis revealed that LAI was the most important controlling factor explaining CO2 concentration variation (total effect of 0.66), followed by emissions (-0.58), temperature (0.45), precipitation (0.30), wind speed (-0.28), and soil water (0.07). The model explained 93% of the increase in CO2 concentration. Our results provide crucial information on the patterns of CO2 concentrations and their driving mechanisms, which are particularly significant in the context of climate change.

DOI: 10.1007/s11769-024-1484-z

Source: https://link.springer.com/article/10.1007/s11769-024-1484-z

期刊信息

Chinese Geographical Science《中国地理科学》,创刊于1991年。隶属于施普林格·自然出版集团,最新IF:3.4

官方网址:https://link.springer.com/journal/11769
投稿链接:http://egeoscien.neigae.ac.cn/journalx_zgdlkxen/authorLogOn.action