近日,英国约克大学P. R. McGonigal团队研究了不依赖状态的离子电导率。相关论文发表在2025年12月18日出版的《科学》杂志上。
液体凭借其分子层面的位置与取向无序性,通常表现出较高的离子导电性,这种特性使得离子能够自由移动。然而,当物质从流动的液态转变为更有序的固态时,离子导电性往往会出现不可避免的急剧下降。
研究组报道了一类有机盐材料,它们在从初始各向同性液体到液晶态、再到结晶态的三态转变过程中,能够保持相同的离子传导机制。这一特性是通过以下设计实现的:最大限度地减弱可移动离子与高度离域的反离子之间的离子对相互作用,这些反离子以逐级方式组装,从而在相变过程中保持构象灵活性。这种不受物态影响的离子导电特性,为在有机固体中实现类似液体的离子传导开辟了新的可能性。
附:英文原文
Title: State-independent ionic conductivity
Author: J. Barclay, J. M. Williamson, H. Litt, S. J. Cowling, K. Shimizu, A. A. Freitas, S. Poppe, J. Sturala, Y. Sun, M. Kohout, A.-J. Avestro, J. N. Canongia Lopes, C. Groves, J. C. Jones, P. R. McGonigal
Issue&Volume: 2025-12-18
Abstract: Liquids lend themselves to high ionic conductivities because of their molecular-level positional and orientational disorder, which enables the free movement of ions. However, there is an unavoidable steep drop in ionic conductivity upon phase transition from a fluid state to the more ordered solid state. Here, we describe organic salts that maintain the same ionic conductivity mechanism across transitions between three states of matter, from an initial isotropic liquid to a liquid crystalline state and then to a crystalline solid. We achieved this property by minimizing the ion-pairing interactions between mobile ions and highly diffuse counterions that assemble in a stepwise manner to preserve conformational flexibility across phase transitions. This state-independent ionic conductivity opens up opportunities to exploit liquid-like ionic conductivity in organic solids.
DOI: adk0786
Source: https://www.science.org/doi/10.1126/science.adk0786
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login
