近日,美国马里兰大学Mohammad Hafezi团队研究了高成品率非线性光子学的多时间尺度频率相位匹配。相关论文于2025年11月6日发表在《科学》杂志上。
集成非线性光子学长期面临晶圆级功能器件良率的瓶颈:纳米级制造误差会破坏能量与动量守恒非线性过程所要求的严格频率-相位匹配条件。研究组提出嵌套频率-相位匹配这一被动式解决方案以松弛匹配约束,并在商用电绝缘硅氮化物(SiN)耦合环形谐振腔构成的双时间尺度晶格中实现谐波生成。
该嵌套晶格可同步在基波、二次、三次及四次谐波波段产生超宽带光,并实现100%多功能晶圆级器件良率,整个过程完全被动实现且无需几何结构微调。独特的空间与光谱特征证实了理论预测的频率-相位匹配条件松弛,为芯片级非线性光学开辟可扩展路径。该方案为集成频率转换与同步、自参考、精密计量、压缩态光源及非线性光学计算等应用提供新的可能性。
附:英文原文
Title: Multi-timescale frequency-phase matching for high-yield nonlinear photonics
Author: Mahmoud Jalali Mehrabad, Lida Xu, Gregory Moille, Christopher J. Flower, Supratik Sarkar, Apurva Padhye, Shao-Chien Ou, Daniel G. Suárez-Forero, Mahdi Ghafariasl, Yanne Chembo, Kartik Srinivasan, Mohammad Hafezi
Issue&Volume: 2025-11-06
Abstract: Integrated nonlinear photonics struggles to deliver wafer-scale functional device yields: Nanometer-level fabrication variations compromise the strict frequency-phase matching mandated by energy- and momentum-conserving nonlinear processes. We introduce nested frequency-phase matching, a passive scheme that relaxes these constraints, and implement it in a two-timescale lattice of commercially available silicon nitride (SiN) coupled ring resonators for harmonic generation. The nested lattice simultaneously generates ultrabroad bandwidth light in the fundamental-, second-, third-, and fourth-harmonic bands and achieves 100% multifunctional wafer-scale device yield, all passively and without geometry fine-tuning. Distinct spatial and spectral signatures confirm the predicted relaxation of frequency-phase matching, establishing a scalable route for chip-scale nonlinear optics. Our approach provides possibilities for integrated frequency conversion and synchronization, self-referencing, precision metrology, squeezed-light sources, and nonlinear optical computing.
DOI: adu6368
Source: https://www.science.org/doi/10.1126/science.adu6368
