近日,美国佛罗里达大学Antonios Kyriazis团队研究了潮汐扰动引力原子共振跃迁产生的引力波。这一研究成果于2025年11月12日发表在《高能物理杂志》上。
轻玻色子可以通过超辐射过程在旋转黑洞周围形成引力原子(GA)。考虑到该黑洞是双星系统的一部分,其伴星的潮汐势会周期性地扰动引力原子,从而在其两个能量本征态之间发生一次“原子”跃迁。该共振跃迁由朗道-齐纳系统建模,其中伴星的轨道频率决定了相关的跃迁。
在这项工作中,研究组分析了一种直接源于双星系统中引力原子能级跃迁的新颖准单色引力波信号。他们推导出了该信号的应变波形和频谱的解析公式。进一步研究了在毫赫至分赫频段内可能具有高信噪比的GA-双星系统。使用未来的空间引力波天文台DECIGO,他们发现对于精细结构常数α= 0.3、宿主黑洞质量M = 150M⊙、玻色子质量μ =10−13eV且距离在100千秒差距(kpc)以内的系统,其信噪比可达??(10 – 200)。考虑到关于黑洞初始自旋的天体物理不确定性、与其他单色信号的简并性以及在这些距离上较低的系统并合率,研究组得出结论:探测到该信号将具有挑战性。
附:英文原文
Title: Gravitational waves from resonant transitions of tidally perturbed gravitational atoms
Author: Kyriazis, Antonios, Yang, Fengwei
Issue&Volume: 2025-11-12
Abstract: Light bosons can form a gravitational atom (GA) around a spinning black hole through the superradiance proce ss. Considering the black hole to be part of a binary system, the tidal potential of the companion periodically perturbs the GA such that an “atomic” transition occurs between two of its energy eigenstates. The resonant transition is modeled by the Landau-Zener system, where the orbital frequency of the companion determines the relevant transition. In this work, we study a novel quasi-monochromatic gravitational wave signal originating directly from the level transition of the GA in a binary system. We derive the analytical formulae of both the strain waveform and frequency spectrum of the signal. We further investigate the GA-binary systems that can have a large signal-to-noise ratio in the milli-Hz to deci-Hz frequency band. Using the future space-based gravitational wave observatory DECIGO, we find the signal-to-noise ratio is (10 – 200) for the fine-structure constant α 0.3, host black hole mass M = 150M⊙ and boson mass μ 1013eV at a distance within 100 kpc. Given astrophysical uncertainties about the black hole’s initial spin, the degeneracy with other monochromatic signals and the small merger rate at those distances, we conclude that the detection of the signal would be challenging.
DOI: 10.1007/JHEP11(2025)062
Source: https://link.springer.com/article/10.1007/JHEP11(2025)062
