近日,美国哈佛大学Lukin, Mikhail D.团队研究了通用量子计算的容错中性原子结构。该研究于2025年11月10日发表在《自然》杂志上。
量子纠错(QEC)是实现大规模量子计算机的关键。然而,由于对编码后的“逻辑”量子比特进行操作的复杂性,理解构建容错量子器件的物理原理并将其组合成高效架构,仍是当前的重大科学挑战。
研究组利用最多448个中性原子的可重构阵列,实现了通用容错量子处理架构的核心组件,并对其运行机制进行了实验探索。首先,采用表面码研究了重复量子纠错如何抑制错误。通过原子损耗检测与机器学习解码,在四轮表征电路中展示了低于阈值2.14(13)倍的性能。随后,通过横向门和晶格操作探究了逻辑纠缠,并借助三维码的横向量子隐形传态扩展至通用逻辑运算,实现了任意角度合成且开销仅为对数多项式量级。最后,开发了电路中途量子比特复用技术,将实验循环速率提升两个数量级,支持包含数十个逻辑量子比特、数百次逻辑隐形传态及高码率的深度电路协议,同时保持内部熵恒定。
这些实验揭示了高效架构设计的关键原理:量子逻辑与熵移除的协同作用、逻辑门与魔法态制备中物理纠缠的合理利用、以及通过隐形传态实现通用性与物理量子比特重置。这些成果为可扩展的通用纠错量子处理器及其在中性原子系统中的实际应用奠定了基础。
附:英文原文
Title: A fault-tolerant neutral-atom architecture for universal quantum computation
Author: Bluvstein, Dolev, Geim, Alexandra A., Li, Sophie H., Evered, Simon J., Bonilla Ataides, J. Pablo, Baranes, Gefen, Gu, Andi, Manovitz, Tom, Xu, Muqing, Kalinowski, Marcin, Majidy, Shayan, Kokail, Christian, Maskara, Nishad, Trapp, Elias C., Stewart, Luke M., Hollerith, Simon, Zhou, Hengyun, Gullans, Michael J., Yelin, Susanne F., Greiner, Markus, Vuleti, Vladan, Cain, Madelyn, Lukin, Mikhail D.
Issue&Volume: 2025-11-10
Abstract: Quantum error correction (QEC) [1,2] is essential for the realization of large-scale quantum computers [3,4]. However, due to the complexity of operating on the encoded ‘logical’ qubits [5,6], understanding the physical principles for building fault-tolerant quantum devices and combining them into efficient architectures is an outstanding scientific challenge. Here we utilize reconfigurable arrays of up to 448 neutral atoms to implement the key elements of a universal, fault-tolerant quantum processing architecture and experimentally explore their underlying working mechanisms. We first employ surface codes to study how repeated QEC suppresses errors [6,7], demonstrating 2.14(13)x below-threshold performance in a four-round characterization circuit by leveraging atom loss detection and machine learning decoding [8,9]. We then investigate logical entanglement using transversal gates and lattice surgery [10–12], and extend it to universal logic through transversal teleportation with 3D [[15,1,3]] codes [13,14], enabling arbitrary-angle synthesis with polylogarithmic overhead [5,15]. Finally, we develop mid-circuit qubit re-use [16], increasing experimental cycle rates by two orders of magnitude and enabling deep-circuit protocols with dozens of logical qubits and hundreds of logical teleportations [17–20] with [[7,1,3]] and high-rate [[16,6,4]] codes while maintaining constant internal entropy. Our experiments reveal key principles for efficient architecture design, involving the interplay between quantum logic & entropy removal, judiciously using physical entanglement in logic gates & magic state generation, and leveraging teleportations for universality & physical qubit reset. These results establish foundations for scalable, universal error-corrected processing and its practical implementation with neutral atom systems.
DOI: 10.1038/s41586-025-09848-5
Source: https://www.nature.com/articles/s41586-025-09848-5
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html
