北京大学徐东升研究小组取得一项新进展。他们研究了柔性光电器件中ETL与钙钛矿界面的超强键合。相关论文于2025年1月21日发表在《德国应用化学》杂志上。
有机-无机杂化钙钛矿由于其优越的光电性能和结构灵活性,在柔性光电器件中显示出巨大的潜力。然而,埋藏界面的机械变形引起的裂纹和衬底的分层,严重限制了光电性能和器件使用寿命。
为解决该问题,研究人员设计了一种旨在增强SnO2/钙钛矿界面,和钙钛矿层机械稳定性的双向键合策略,通过使用多功能有机盐4-(三氟甲氧基)苯肼盐酸盐(TPH)。
这种方法显著增强了电子传输层和钙钛矿层之间埋藏界面的键合,TPH修饰的SnO2/钙钛矿界面在10000次弯曲循环后仍保持完整。同时,TPH减缓了空洞的形成,增强了埋藏界面处钙钛矿的结晶度,抑制了离子在器件内部的迁移。此外,在钙钛矿体中加入TPH可以降低成核活化能,加速成核,从而获得高质量的钙钛矿膜。
因此,目标柔性和刚性钙钛矿太阳能电池的功率转换效率(PCE)分别达到21.64%和23.61%。在25000次弯曲循环后,目标柔性器件保留了其初始PCE的92.3%。这种方法为提高柔性钙钛矿光电器件的机械耐久性提供了一种有效的解决方案。
附:英文原文
Title: Super Strong Bonding at the interface between ETL and Perovskite for Robust Flexible Optoelectronic Devices
Author: Jingjing Hui, Jun Zhan, Jinxia Zhang, Xiaowen Gao, Cong Wang, Yiyi Li, Jin Li, Kewei Wang, Zeyu He, Qi Li, Yi Wang, Yongqi Liang, Langxing Chen, Yukui Zhang, Dongsheng Xu
Issue&Volume: 2025-01-21
Abstract: Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH). This approach significantly enhances the bonding at the buried interface between the electronic transport layer and perovskite layer, which is demonstrated by TPH-modified SnO2/perovskite interface remaining intact after 10,000 bending cycles. Meanwhile, TPH mitigates void formation, enhances perovskite crystallinity at the buried interface, and inhibits ion migration inside the devices. Furthermore, incorporating TPH in perovskite bulk decreases the nucleation activation energy and accelerates nucleation, leading to high-quality perovskite film. Consequently, power conversion efficiencies (PCEs) of 21.64% and 23.61% are achieved for target flexible and rigid perovskite solar cells, respectively. The target flexible device retained 92.3% of its initial PCE after 25,000 bending cycles. This approach provides a robust solution for enhancing the mechanical durability of flexible perovskite optoelectronic devices.
DOI: 10.1002/anie.202424483
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202424483
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx