当前位置:科学网首页 > 小柯机器人 >详情
人工分子马达催化转化化学能
作者:小柯机器人 发布时间:2025/1/17 15:10:18

英国曼彻斯特大学Leigh David A.团队报道了人工分子马达催化转化化学能。相关研究成果发表在2025年1月15日出版的《自然》。

细胞显示出一系列由催化驱动的运动蛋白产生的机械活动。这就提出了一个基本问题,即化学反应的加速如何使该反应释放的能量,能够被分子催化剂转化从而完成做功。

该文中,研究展示了化学能在分子水平上以交联聚合物凝胶的,动力收缩和动力再膨胀的形式转化为机械力,这是由人工催化剂驱动的分子马达的定向旋转驱动的。转子围绕凝胶聚合物框架中包含的催化驱动马达分子的定子连续360°旋转,使交联网络的聚合物链相互缠绕。这会逐渐增加扭动并收紧缠结,导致凝胶宏观收缩至其原始体积的约70%。

随后加入相反的对映体燃料系统,使马达分子反向旋转,解开缠结,使凝胶重新膨胀。在新方向上继续用力扭转线会导致凝胶重新收缩。除了致动,凝胶中的运动分子旋转还会产生其他化学和物理结果,包括杨氏模量和储能模量的变化——后者与运动旋转引起的股线交叉的增加成正比。

合成有机催化剂对负载的工作及其能量转换机制的实验演示,为围绕生物马达产生力的机制,和人工分子纳米技术的设计原理的争论提供了信息。

附:英文原文

Title: Transducing chemical energy through catalysis by an artificial molecular motor

Author: Wang, Peng-Lai, Borsley, Stefan, Power, Martin J., Cavasso, Alessandro, Giuseppone, Nicolas, Leigh, David A.

Issue&Volume: 2025-01-15

Abstract: Cells display a range of mechanical activities generated by motor proteins powered through catalysis1. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst2,3,4,5,6,7. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force8 in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven9 molecular motors. Continuous 360° rotation of the rotor about the stator of the catalysis-driven motor-molecules incorporated in the polymeric framework of the gel twists the polymer chains of the cross-linked network around one another. This progressively increases writhe and tightens entanglements, causing a macroscopic contraction of the gel to approximately 70% of its original volume. The subsequent addition of the opposite enantiomer fuelling system powers the rotation of the motor-molecules in the reverse direction, unwinding the entanglements and causing the gel to re-expand. Continued powered twisting of the strands in the new direction causes the gel to re-contract. In addition to actuation, motor-molecule rotation in the gel produces other chemical and physical outcomes, including changes in the Young modulus and storage modulus—the latter is proportional to the increase in strand crossings resulting from motor rotation. The experimental demonstration of work against a load by a synthetic organocatalyst, and its mechanism of energy transduction6, informs both the debate3,5,7 surrounding the mechanism of force generation by biological motors and the design principles6,10,11,12,13,14 for artificial molecular nanotechnology.

DOI: 10.1038/s41586-024-08288-x

Source: https://www.nature.com/articles/s41586-024-08288-x

期刊信息
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/