当前位置:科学网首页 > 小柯机器人 >详情
具有驻留滑移带的金属疲劳电催化定位
作者:小柯机器人 发布时间:2025/1/10 21:48:57

复旦大学孙正宗团队报道了具有驻留滑移带的金属疲劳电催化定位。相关研究成果于2025年1月9日发表在《美国化学会杂志》。

金属疲劳是结构材料中一种常见的失效模式,其特征是位错的累积。金属疲劳早期的无损早期检测,对于预防灾难性事件和保护人类生命极其重要。然而,缺乏一种精确的定量方法来以时空分辨率可视化疲劳,这对及时检测造成了重大障碍。

该文中,研究人员展示了一种无损电催化方法来可视化金属疲劳,这对未来的疲劳早期检测很有前景。驻留滑移带(PSB)被认为是金属疲劳失效最重要的缺陷特征之一。选择性电化学高度依赖于PSB结构中的金属晶体学和集体错位,能够以亚毫米分辨率放大电化学响应和区分疲劳阶段。

此外,这种无损电催化方法适用于铜、银、铁和铝等几种常见金属,在金属疲劳是一个关键问题的情况下具有重要意义。

附:英文原文

Title: Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands

Author: Taishi Xiao, Lixun Cheng, Zheng Chen, Yan Hu, Xiang Yao, Junxiang Shu, Sailin Yuan, Yao Ma, Can Tang, Zhewei Huang, Bin Shen, Wenzhong Bao, Xin Xu, Binghui Ge, Zhengzong Sun

Issue&Volume: January 9, 2025

Abstract: Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection. Here, we demonstrate a nondestructive electrocatalytic method to visualize metal fatigue, which is promising for future fatigue early detections. The persistent slip band (PSB) is considered one of the most consequential defect structures for metal fatigue failure. The selective electrochemistry is highly dependent on the metal crystallography and the collective dislocations in the PSB structure, enabling the amplification of the electrochemical response and differentiation of the fatigue stages at a submillimeter resolution. In addition, this nondestructive electrocatalytic method is applicable to several common metals, including copper, silver, iron, and aluminum, holding great significance where metal fatigue is a critical concern.

DOI: 10.1021/jacs.4c12114

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c12114

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000