吉林大学杜菲团队报道了通过调节P2/P3非均质性和互易性来提高层状氧化物的K+离子电导率。相关研究成果于2024年9月03日发表在国际顶尖学术期刊《德国应用化学》。
固态钾金属电池因其低成本、高能量密度和固有安全性而成为电网规模储能的有前景的候选者。然而,由于K+离子的离子半径较大,固态K离子导体的离子导电性较差。
该文中,研究人员报告了P2/P3共生K0.62Mg0.54Sb0.46O2固体电解质(SE)的相异质性和互易性的精确调节,以在25°C下提高1.6×10-4 S cm-1的高离子电导率。通过阐明层状框架内原子堆叠模式对K+离子迁移势垒的影响,探索了体离子导电机制。
对于晶界处的离子扩散,P2/P3两相共生特性有助于调节SE微观结构,SE微观结构以长度为数十微米的棒状颗粒结晶,促进长距离离子传输并显著降低晶界电阻。
使用改性SE的钾金属对称电池在0.1mA cm-2和0.68mA cm-2的高临界电流密度下,具有超过300小时的出色循环寿命。准固态钾金属电池(QSSKBs)与两种层状氧化物阴极结合,在300次循环中表现出显著的稳定性,优于液体电解质电池。
QSSKB系统为高效、安全、耐用的大规模储能提供了一种有前景的策略。
附:英文原文
Title: Boosting K+-ionic Conductivity of Layered Oxides via Regulating P2/P3 Heterogeneity and Reciprocity for Room-temperature Quasi-solid-state Potassium Metal Batteries
Author: Xinyuan Zhang, Boqian Yi, Wanqing Jia, Shuoqing Zhao, Serguei Savilov, Shiyu Yao, Ze Xiang Shen, Gang Chen, Zhixuan Wei, Fei Du
Issue&Volume: 03 September 2024
Abstract: Solid-state potassium metal batteries are promising candidates for grid-scale energy storage due to their low cost, high energy density and inherent safety. However, solid state K-ion conductors struggle with poor ionic conductivity due to the large ionic radius of K+-ions. Herein, we report precise regulation of phase heterogeneity and reciprocity of the P2/P3-symbiosis K0.62Mg0.54Sb0.46O2 solid electrolyte (SE) for boosting a high ionic conductivity of 1.6×10-4 S cm-1 at 25 °C. The bulk ionic conducting mechanism is explored by elucidating the effect of atomic stacking mode within the layered framework on K+-ion migration barriers. For ion diffusion at grain boundaries, the P2/P3 biphasic symbiosis property assists in tunning the SE microstructure, which crystallizes in rod-like particles with lengths of tens of micrometers facilitating long-distance ion transport and significantly decreasing grain boundary resistance. Potassium metal symmetric cells using the modified SE deliver excellent cycling life over 300h at 0.1mAcm2 and a high critical current density of 0.68 mAcm2. The quasi-solid-state potassium metal batteries (QSSKBs) coupled with two kinds of layered oxide cathodes demonstrate remarkable stability over 300 cycles, outperforming the liquid electrolyte counterparts. The QSSKB system provides a promising strategy for high-efficiency, safe, and durable large-scale energy storage.
DOI: 10.1002/anie.202413214
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202413214
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx