近日,中国科学院宁波材料技术与工程研究所的朱锦&黄轶禾及其研究团队取得一项新进展。经过不懈努力,他们实现石墨烯壳包覆高熵合金纳米颗粒的激光固相合成。相关研究成果已于2024年9月26日在国际知名学术期刊《光:科学与应用》上发表。
该研究团队报道了通过在三维多孔结构的激光诱导石墨烯(LIG)载体上,对混合金属前驱体进行激光照射,从而实现CrMnFeCoNi纳米粒子的激光固相合成。CrMnFeCoNi纳米粒子被数层石墨烯包覆,形成了石墨烯壳包覆的HEA纳米粒子。研究人员结合理论模拟和实验观察,探究了LIG载体上HEA纳米粒子的激光固相合成机制,考虑了混合金属前驱体的吸附、热分解、通过激光诱导热电子发射的电子还原以及液滴分裂等过程。
在当前激光设置下,生产速率高达30克/小时。将激光合成的、负载于LIG涂层碳纸上的石墨烯壳包覆CrMnFeCoNi纳米粒子直接用作三维无粘结剂集成电极,展现了对析氧反应优异的电催化活性,在10毫安/平方厘米的电流密度下,过电位为293毫伏,且在碱性介质中表现出超过428小时的卓越稳定性,性能优于商业RuO2催化剂以及其他方法报道的相关催化剂。本研究还通过成功合成CrMnFeCoNi氧化物、硫化物和磷化物纳米粒子,展示了该技术的通用性。
据悉,快速合成高熵合金纳米粒子(HEA NPs)为开发广泛应用于功能材料提供了新的机遇。尽管一些方法已成功制备出HEA NPs,但这些方法通常需要严苛的条件,如高压、高温、受限气氛和有限基底,这阻碍了其实际应用的可行性。
附:英文原文
Title: Laser solid-phase synthesis of graphene shell-encapsulated high-entropy alloy nanoparticles
Author: Liu, Yuxiang, Yuan, Jianghuai, Zhou, Jiantao, Pan, Kewen, Zhang, Ran, Zhao, Rongxia, Li, Lin, Huang, Yihe, Liu, Zhu
Issue&Volume: 2024-09-26
Abstract: Rapid synthesis of high-entropy alloy nanoparticles (HEA NPs) offers new opportunities to develop functional materials in widespread applications. Although some methods have successfully produced HEA NPs, these methods generally require rigorous conditions such as high pressure, high temperature, restricted atmosphere, and limited substrates, which impede practical viability. In this work, we report laser solid-phase synthesis of CrMnFeCoNi nanoparticles by laser irradiation of mixed metal precursors on a laser-induced graphene (LIG) support with a 3D porous structure. The CrMnFeCoNi nanoparticles are embraced by several graphene layers, forming graphene shell-encapsulated HEA nanoparticles. The mechanisms of the laser solid-phase synthesis of HEA NPs on LIG supports are investigated through theoretical simulation and experimental observations, in consideration of mixed metal precursor adsorption, thermal decomposition, reduction through electrons from laser-induced thermionic emission, and liquid beads splitting. The production rate reaches up to 30g/h under the current laser setup. The laser-synthesized graphene shell-encapsulated CrMnFeCoNi NPs loaded on LIG-coated carbon paper are used directly as 3D binder-free integrated electrodes and exhibited excellent electrocatalytic activity towards oxygen evolution reaction with an overpotential of 293mV at the current density of 10mA/cm2 and exceptional stability over 428h in alkaline media, outperforming the commercial RuO2 catalyst and the relevant catalysts reported by other methods. This work also demonstrates the versatility of this technique through the successful synthesis of CrMnFeCoNi oxide, sulfide, and phosphide nanoparticles.
DOI: 10.1038/s41377-024-01614-y
Source: https://www.nature.com/articles/s41377-024-01614-y
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex