近日,比利时微电子研究中心的A. Potocnik及其研究团队取得一项新进展。经过不懈努力,他们实现300毫米晶圆上超导量子比特的先进CMOS制造。相关研究成果已于2024年9月18日在国际权威学术期刊《自然》上发表。
本研究展示了采用工业制造方法,在300毫米互补金属氧化物半导体(CMOS)中试线上制造的超导传输子量子比特,其弛豫时间和相干时间均超过100微秒。研究人员提供了整个晶片上的大规模统计数据,包括相干性、良率、变异性和老化情况,证实了本方法的有效性。
所采用的工业级制造工艺仅使用光学光刻和反应离子刻蚀,其性能和良率与采用金属剥离、斜角蒸发和电子束刻写的传统实验室技术相当。此外,该工艺还具备通过三维集成和更多工艺优化实现进一步扩展的潜力。这一成果标志着一种替代性、新颖且真正与CMOS兼容的大规模制造方法的问世,为超导量子计算处理器的制造开辟了新途径。
据悉,超导量子比特技术的发展已展现出构建实用量子计算机的巨大潜力。随着量子处理器复杂性的不断增加,对严格制造公差的需求变得愈发关键。采用先进的工业制造工艺有助于实现必要的制造控制水平,以支持量子处理器的持续扩展。然而,目前这些工业工艺尚未优化以生产高相干性器件,也并未先验性地与常用的超导量子比特制造方法兼容。
附:英文原文
Title: Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers
Author: Van Damme, J., Massar, S., Acharya, R., Ivanov, Ts., Perez Lozano, D., Canvel, Y., Demarets, M., Vangoidsenhoven, D., Hermans, Y., Lai, J. G., Vadiraj, A. M., Mongillo, M., Wan, D., De Boeck, J., Potocnik, A., De Greve, K.
Issue&Volume: 2024-09-18
Abstract: The development of superconducting qubit technology has shown great potential for the construction of practical quantum computers. As the complexity of quantum processors continues to grow, the need for stringent fabrication tolerances becomes increasingly critical. Utilizing advanced industrial fabrication processes could facilitate the necessary level of fabrication control to support the continued scaling of quantum processors. However, at present, these industrial processes are not optimized to produce high-coherence devices, nor are they a priori compatible with the approaches commonly used to make superconducting qubits. Here we demonstrate superconducting transmon qubits manufactured in a 300mm complementary metal–oxide–semiconductor (CMOS) pilot line using industrial fabrication methods, with resulting relaxation and coherence times exceeding 100μs. We show across-wafer, large-scale statistics of coherence, yield, variability and ageing that confirm the validity of our approach. The presented industry-scale fabrication process, which uses only optical lithography and reactive-ion etching, has a performance and yield in line with conventional laboratory-style techniques utilizing metal lift-off, angled evaporation and electron-beam writing. Moreover, it offers the potential for further upscaling through three-dimensional integration and more process optimization. This result marks the advent of an alternative and new, large-scale, truly CMOS-compatible fabrication method for superconducting quantum computing processors.
DOI: 10.1038/s41586-024-07941-9
Source: https://www.nature.com/articles/s41586-024-07941-9
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html