该研究团队提出在扩散中增加一个实空间维度,系统的特征值从“虚数”转变为“实数”。通过精心设计具有耦合网络的有效哈密顿量,研究人员在热传递中实现了局域和非局域拓扑模式。活跃热晶格中的模拟和实验验证了所提出理论策略的有效性。这种方法可应用于在扩散系统中建立各种拓扑晶格,为在动态扩散场景中工程化拓扑保护边缘态提供了见解。
据悉,拓扑物理学激发了对光子、声学和机械系统中拓扑格子的深入研究,催生了在传统设置中无法实现的反常效应。继这些在经典波动动力学中的努力取得成功之后,人们越来越有兴趣在扩散领域建立其拓扑对应物。
附:英文原文
Title: Localized and delocalized topological modes of heat
Author: Li, Jiaxin, Xu, Chengxin, Xu, Zifu, Xu, Guoqiang, Yang, Shuihua, Liu, Kaipeng, Chen, Jianfeng, Li, Tianlong, Qiu, Cheng-Wei
Issue&Volume: 2024-8-20
Abstract: The topological physics has sparked intensive investigations into topological lattices in photonic, acoustic, and mechanical systems, powering counterintuitive effects otherwise inaccessible with usual settings. Following the success of these endeavors in classical wave dynamics, there has been a growing interest in establishing their topological counterparts in diffusion. Here, we propose an additional real-space dimension in diffusion, and the system eigenvalues are transformed from “imaginary” to “real.” By judiciously tailoring the effective Hamiltonian with coupling networks, localized and delocalized topological modes are realized in heat transfer. Simulations and experiments in active thermal lattices validate the effectiveness of the proposed theoretical strategy. This approach can be applied to establish various topological lattices in diffusion systems, offering insights into engineering topologically protected edge states in dynamic diffusive scenarios.
DOI: 10.1073/pnas.2408843121
Source: https://www.pnas.org/doi/abs/10.1073/pnas.2408843121