当前位置:科学网首页 > 小柯机器人 >详情
聚合物纳米通道用于高效盐梯度能量转换
作者:小柯机器人 发布时间:2024/6/9 23:19:00

中国科学院理化所闻利平团队报道了TRPM4启发的具有优先阳离子传输的聚合物纳米通道,用于高效盐梯度能量转换。相关研究成果于2024年6月6日发表于国际一流学术期刊《美国化学会杂志》。

生物离子通道用于有效的能量转换具有可切换的阳离子传输特征,其具有超高的选择性,例如通过阳离子π相互作用调节的Ca2+激活的TRPM4通道,但在人工纳米通道中实现类似的高选择性功能是具有挑战性的。

该文中,研究人员设计了一种受TRPM4启发的,由两个分别具有磺酸和吲哚部分的聚(醚砜)组装而成的阳离子选择性纳米通道(CN)。它们作为阳离子选择性活化剂,通过离子和阳离子π相互作用来管理Na+/Cl选择性。Na+可以激活CNs的阳离子选择性,从而在50倍盐度梯度下,Na+迁移数从0.720显著提高到0.982(Na+/Cl选择性比从2.6提高到54.6),超过了K+迁移数(0.886)和Li+迁移量(0.900)。

TRPM4启发的纳米通道膜实现了5.7 W m–2的最大输出功率密度,用于盐度梯度功率采集。此外,提供了高达46.5%的创纪录的能量转换效率,优于大多数纳米通道膜(低于30%)。

该项工作提出了一种新的仿生纳米通道策略,用于高选择性的阳离子传输和高效的盐度梯度能量转换。

附:英文原文

Title: TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion

Author: Dehua Huang, Kehan Zou, Yuge Wu, Ke Li, Zhehua Zhang, Tianchi Liu, Weipeng Chen, Zidi Yan, Shengyang Zhou, Xiang-Yu Kong, Lei Jiang, Liping Wen

Issue&Volume: June 6, 2024

Abstract: Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cationπ interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl– selectivity via ionic and cationπ interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl– selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m–2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.

DOI: 10.1021/jacs.4c02629

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c02629

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000