当前位置:科学网首页 > 小柯机器人 >详情
具有优化幺正耦合簇拟设的实验量子计算化学研究
作者:小柯机器人 发布时间:2024/6/14 14:08:49

近日,中国科学技术大学的潘建伟及其研究团队取得一项新进展。他们对具有优化幺正耦合簇拟设的实验量子计算化学进行了研究。相关研究成果已于2024年6月11日在国际知名学术期刊《自然—物理学》上发表。

该研究团队成功攻克了使用噪声量子处理器求解分子电子结构的关键难题。他们提出的方案显著优化了电路深度和运行时间,这两个指标在化学模拟中至关重要。通过系统硬件的强化和误差缓解技术的集成,研究人员不仅突破了理论和实验的限制,还将优化的单一耦合簇分析变分量子特征解算器扩展至12个量子比特。

这一突破性的进展使得研究人员能够获取分子基态能量的高精度结果,误差降低了约两个数量级。此项研究为电子结构计算领域提供了一种可扩展的、切实可行的解决方案。

据悉,量子计算化学已经成为量子计算的一个潜在应用。混合量子经典计算方法,如变分量子特征解,已被设计为解决量子化学问题的有前途的方法。然而,由于理论复杂性和实验不完善所带来的挑战阻碍了取得可靠和准确结果的进展。因此,解决电子结构的实验工作仍然局限于不可扩展或经典可模拟的分析,或者局限于具有大误差的几个量子比特。

附:英文原文

Title: Experimental quantum computational chemistry with optimized unitary coupled cluster ansatz

Author: Guo, Shaojun, Sun, Jinzhao, Qian, Haoran, Gong, Ming, Zhang, Yukun, Chen, Fusheng, Ye, Yangsen, Wu, Yulin, Cao, Sirui, Liu, Kun, Zha, Chen, Ying, Chong, Zhu, Qingling, Huang, He-Liang, Zhao, Youwei, Li, Shaowei, Wang, Shiyu, Yu, Jiale, Fan, Daojin, Wu, Dachao, Su, Hong, Deng, Hui, Rong, Hao, Li, Yuan, Zhang, Kaili, Chung, Tung-Hsun, Liang, Futian, Lin, Jin, Xu, Yu, Sun, Lihua, Guo, Cheng, Li, Na, Huo, Yong-Heng, Peng, Cheng-Zhi, Lu, Chao-Yang, Yuan, Xiao, Zhu, Xiaobo, Pan, Jian-Wei

Issue&Volume: 2024-06-11

Abstract: Quantum computational chemistry has emerged as a potential application of quantum computing. Hybrid quantum-classical computing methods, such as variational quantum eigensolvers, have been designed as promising solutions to quantum chemistry problems. Nonetheless, challenges due to theoretical complexity and experimental imperfections hinder progress in achieving reliable and accurate results. Experimental works for solving electronic structures are consequently still restricted to non-scalable or classically simulable ansatz or limited to a few qubits with large errors. Here, we address the critical challenges associated with solving molecular electronic structures using noisy quantum processors. Our protocol presents improvements in the circuit depth and running time, key metrics for chemistry simulation. Through systematic hardware enhancements and the integration of error-mitigation techniques, we overcome theoretical and experimental limitations and successfully scale up the implementation of variational quantum eigensolvers with an optimized unitary coupled cluster ansatz to 12 qubits. We produce high-precision results of the ground-state energy for molecules with error suppression by around two orders of magnitude. Our work demonstrates a feasible path towards a scalable solution to electronic structure calculation.

DOI: 10.1038/s41567-024-02530-z

Source: https://www.nature.com/articles/s41567-024-02530-z

期刊信息
Nature Physics:《自然—物理学》,创刊于2005年。隶属于施普林格·自然出版集团,最新IF:19.684