当前位置:科学网首页 > 小柯机器人 >详情
研究实现半导体器件的超分辨率和非破坏性计量
作者:小柯机器人 发布时间:2024/5/31 15:32:27

近日,韩国三星电子有限公司的Kwangrak Kim及其研究团队取得一项新进展。经过不懈努力,他们利用微球辅助高光谱成像实现半导体器件的超分辨率、非破坏性计量。相关研究成果已于2024年5月28日在国际知名学术期刊《光:科学与应用》上发表。

据悉,随着半导体器件的缩小和制造工艺的进步,精确测量单元内临界尺寸(CD)变得越来越重要。传统的测试单元组(TEG)测量方法已不足以表示单元块中精细的、重复的模式。传统的非破坏性计量技术,如光学临界尺寸(OCD),由于其大的光斑直径约为25μm,这阻碍了其在单元内详细结构分析的有效性。因此,迫切需要小点非破坏性计量方法。

为了克服这一限制,研究人员成功展示了一个微球辅助高光谱成像(MAHSI)系统,该系统专为超分辨率的小点光学计量而设计。该系统凭借微球辅助超分辨率成像技术,在5.6μm×5.6μm的视场范围内实现了高达66nm的光学分辨率,有效突破了衍射极限,显著提升了系统的放大倍率。MAHSI系统融合了400-790nm波长范围的高光谱成像技术,能够捕获每个相机像素的反射光谱。

该系统实现的像素分辨率为14.4nm/pixel,相当于测量光斑大小,并达到了惊人的450X放大倍率。MAHSI系统特别适用于测量如DRAM单元块的角落和边缘等关键区域的局部均匀性,这些区域在传统OCD方法中难以检测。据研究人员所知,这一方法代表了微球辅助高光谱成像技术的全球首次应用,为解决半导体器件复杂3D结构中的计量挑战提供了有效途径。

附:英文原文

Title: Microsphere-assisted hyperspectral imaging: super-resolution, non-destructive metrology for semiconductor devices

Author: Park, Jangryul, Choi, Youngsun, Kwon, Soonyang, Lee, Youngjun, Kim, Jiwoong, Kim, Jae-joon, Lee, Jihye, Ahn, Jeongho, Kwak, Hidong, Yang, Yusin, Jo, Taeyong, Lee, Myungjun, Kim, Kwangrak

Issue&Volume: 2024-05-28

Abstract: As semiconductor devices shrink and their manufacturing processes advance, accurately measuring in-cell critical dimensions (CD) becomes increasingly crucial. Traditional test element group (TEG) measurements are becoming inadequate for representing the fine, repetitive patterns in cell blocks. Conventional non-destructive metrology technologies like optical critical dimension (OCD) are limited due to their large spot diameter of approximately 25μm, which impedes their efficacy for detailed in-cell structural analysis. Consequently, there is a pressing need for small-spot and non-destructive metrology methods. To address this limitation, we demonstrate a microsphere-assisted hyperspectral imaging (MAHSI) system, specifically designed for small spot optical metrology with super-resolution. Utilizing microsphere-assisted super-resolution imaging, this system achieves an optical resolution of 66nm within a field of view of 5.6μm×5.6μm. This approach effectively breaks the diffraction limit, significantly enhancing the magnification of the system. The MAHSI system incorporating hyperspectral imaging with a wavelength range of 400–790nm, enables the capture of the reflection spectrum at each camera pixel. The achieved pixel resolution, which is equivalent to the measuring spot size, is 14.4nm/pixel and the magnification is 450X. The MAHSI system enables measurement of local uniformity in critical areas like corners and edges of DRAM cell blocks, areas previously challenging to inspect with conventional OCD methods. To our knowledge, this approach represents the first global implementation of microsphere-assisted hyperspectral imaging to address the metrology challenges in complex 3D structures of semiconductor devices.

DOI: 10.1038/s41377-024-01469-3

Source: https://www.nature.com/articles/s41377-024-01469-3

期刊信息

Light: Science & Applications《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4

官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex